TY - GEN
T1 - Iterative finite element deformable model for nonrigid coregistration of multimodal breast images
AU - Krol, Andrzej
AU - Unlu, Mehmet Z.
AU - Magri, Alphonso
AU - Lipson, Edward
AU - Coman, Ioana L.
AU - Mandel, James A.
AU - Baum, Karl G.
AU - Feiglin, David H.
PY - 2006
Y1 - 2006
N2 - We have developed a nonrigid registration technique applicable to breast tissue imaging. It relies on a finite element method (FEM) model and a set of fiducial skin markers (FSMs) placed on the breast surface. It can be applied for both intra- and intermodal breast image registration. The registration consists of two steps. First, location and displacements of corresponding FSM observed in both moving and target volumes are determined, and then FEM is used to distribute the FSM displacements linearly over the entire breast volume. After determining the displacements at all the mesh nodes, the moving breast volume is registered to the target breast volume using an image-warping algorithm. In the second step, to correct for any residual misregistration, displacements are estimated for a large number of corresponding surface points on the moving and the target breast images, already aligned in 3D, and our FEM model and the warping algorithm are applied again. Our non-rigid multimodality and intramodality breast image registration method yielded good quality images with target registration error comparable with pertinent imaging system spatial resolution.
AB - We have developed a nonrigid registration technique applicable to breast tissue imaging. It relies on a finite element method (FEM) model and a set of fiducial skin markers (FSMs) placed on the breast surface. It can be applied for both intra- and intermodal breast image registration. The registration consists of two steps. First, location and displacements of corresponding FSM observed in both moving and target volumes are determined, and then FEM is used to distribute the FSM displacements linearly over the entire breast volume. After determining the displacements at all the mesh nodes, the moving breast volume is registered to the target breast volume using an image-warping algorithm. In the second step, to correct for any residual misregistration, displacements are estimated for a large number of corresponding surface points on the moving and the target breast images, already aligned in 3D, and our FEM model and the warping algorithm are applied again. Our non-rigid multimodality and intramodality breast image registration method yielded good quality images with target registration error comparable with pertinent imaging system spatial resolution.
UR - http://www.scopus.com/inward/record.url?scp=33750945836&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750945836&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33750945836
SN - 0780395778
SN - 9780780395770
T3 - 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings
SP - 852
EP - 855
BT - 2006 3rd IEEE International Symposium on Biomedical Imaging
T2 - 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro
Y2 - 6 April 2006 through 9 April 2006
ER -