Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE

C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, A. Bhat, K. Bhattacharya, M. Bishai, A. Blake, T. Bolton, L. Camilleri, D. Caratelli, I. Caro Terrazas, R. CarrR. Castillo Fernandez, F. Cavanna, G. Cerati, H. Chen, Y. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, L. Cooper-Troendle, J. I. Crespo-Anadón, M. Del Tutto, D. Devitt, A. Diaz, M. Dolce, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, J. J. Evans, A. A. Fadeeva, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, P. Guzowski, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. A. Horton-Smith, A. Hourlier, E. C. Huang, C. James, J. Jan De Vries, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, Y. J. Jwa, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, S. Marcocci, C. Mariani, J. Marshall, D. A.Martinez Caicedo, A. Mastbaum, V. Meddage, T. Mettler, T. Miceli, G. B. Mills, A. Mogan, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, M. Murphy, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Pandey, V. Paolone, A. Papadopoulou, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, L. Rochester, M. Ross-Lonergan, C. Rudolf Von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Söldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St John, T. Strauss, K. Sutton, S. Sword-Fehlberg, A. M. Szelc, N. Tagg, W. Tang, K. Terao, M. Thomson, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, W. Van De Pontseele, R. G.Van De Water, B. Viren, M. Weber, H. Wei, D. A. Wickremasinghe, K. Wierman, Z. Williams, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, G. Yarbrough, L. E. Yates, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.

Original languageEnglish (US)
Article numberP07007
JournalJournal of Instrumentation
Volume13
Issue number7
DOIs
StatePublished - Jul 6 2018

Keywords

  • Data processing Methods
  • Neutrino detectors
  • Performance of High Energy Physics Detectors
  • Time projection Chambers (TPC)

ASJC Scopus subject areas

  • Instrumentation
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE'. Together they form a unique fingerprint.

Cite this