Abstract
The magnetic behavior for Mn:CdSe (0.6%) quantum dots (QDs) exhibits size-dependent magnetic exchange mediated by the concentration of intrinsic carriers, which arise from surface states. High temperature paramagnetic behavior that can be fit to a Brillouin function with weak low temperature antiferromagnetic (AFM) coupling is observed for the large Mn:CdSe (5.0 and 5.8 nm) QDs. The 2.8 and 4.0 nm Mn:CdSe QDs display a size-independent blocking temperature (TB) at 12 K, decreasing coercivity with increasing size, and a lowering of the activation barrier for spin relaxation as the QD is increased in size. The magnetic behavior is inconsistent with classical domain theory behavior for a superparamagnet (SPM) but can be accounted for in a carrier-mediated RKKY model. Fitting the susceptibility data reveals a Pauli-paramagnetic (PPM) component that is believed to arise from the presence of carriers. The carrier density is observed to scale with the surface to volume ratio in the QDs, indicating the carriers arise from surface states that are weakly localized resulting in the onset of long-distance carrier-mediated RKKY exchange inducing overall ferrimagnetism in the Mn:CdSe QDs when the carrier concentration is above a critical threshold.
Original language | English (US) |
---|---|
Pages (from-to) | 7482-7489 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 133 |
Issue number | 19 |
DOIs | |
State | Published - May 18 2011 |
Externally published | Yes |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry