Investigations into the syntheses and structures of clusters of the Mo-O-REO32- systems (E = P and As)

Yuan Da Chang, Jon Zubieta

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

The chemistry of the Mo-O-REO32- systems (E = P, As) is remarkably diverse, exhibiting influences of the Mo oxidation state, solvent, organic substituents and reaction conditions of temperature, pressure and stoichiometry. Clusters exhibiting molybdenum nuclearities of two, four, five and six are common, as are species derived through both ligation to the Mo site and ligand-based transformations. Thus, the reactions of the Mo(VI) starting material [MoO2(acac)2] with the appropriate (REO3H2) or R′(PO3H2)2 provided a series of Mo(VI) clusters, with cyclic structures based on edge- and corner-sharing of Mo-octahedra and ligand tetrahedra. In contrast, when MoCl5 is used in the syntheses, a variety of reduced and mixed valence clusters are observed and metal-mediated ligand transformations are also common. Crystal data: (Et3NH)4[Mo4O10(C6H 5PO3)4] · 2CH3CN (1): P1̄, a = 11.975(2), b = 12.442(2), c = 13.265(3) Å, α = 81.87(3), β = 75.24(3), γ = 65.91(3)°, V = 1743.2(9) Å3, Z = 1, R = 0.054 for 3577 independent reflections (Io ≥ 3σ(Io)). (Et3NH)4[Mo4O10(C6H 5AsO3)4] · 4H2O (2): P21/n, a = 11.243(2), b = 22.582(5), c = 14.665(3) Å, β = 108.87(2)°, V = 3523(2) Å3, Z = 2, R = 0.042 for 3412 reflections (Io ≥ 3σ(Io)). (Et3NH)4[Mo4O10{O 3PCH2PO3}2] · 2CH3CN(3): P21212, a = 14.585(3), b = 17.084(3), c = 12.226(2) Å, V = 3046(2) Å3, Z = 2, R = 0.058 for 2000 reflections (Io ≥ 3σ(Io)). (Et3NH)2[Mo4O10(CH3C 6H4AsO3)2(CH3C 6H4AsO3H)2] · H2O · (Et3NH)(CH3C6H4AsO3H) (4): P1̄, a = 12.815(3), b = 13.668(3), c = 22.486(4) Å, α = 92.76(2), β = 93.17(2), γ = 104.62(2)°, V = 3797(2) Å3, Z = 2, R = 0.051 for 5790 reflections (Io ≥ 3σ(Io)). (Et3NH)2[Mo2O5{(C6H 5)2PO2}4] · CH3CN (5): P1̄, a = 11.102(2), b = 13.359(3), c = 22.000(4) Å, α = 85.75(2), β = 89.29(2), γ = 89.96(2)°, V = 3254(2) Å3, Z = 2, R = 0.061 for 6572 reflections (Io ≥ 3σ(Io)). (R3NH)4[Mo5O15(R′PO 3)2] (R = -CH2CH2CH3, R′ = -CH3) (6a): C2/c, a = 16.784(3), b = 17.855(4), c = 20.468(4) Å, β = 96.49(2)°, Z = 4, R = 0.038 for 2854 reflections (Io ≥ 3σ(Io)). (R = -CH2CH3, R′ = -CH2C6H5) (6b): C2/c, a = 12.915(3), b = 19.860(4), c = 21.865(4) Å, β = 102.38(2)°, V = 5433(3) Å3, Z = 4, R = 0.076 for 2536 reflections (Io ≥ 3σ(Io)). (Et3NH)4[Mo6O18(Bu 1PO3)2] · Me2CO (7): C2/c, a = 19.982(4), b = 13.481(3), c = 22.999(5) Å, β = 112.70(2)°, V = 5716(3) Å3, Z = 4, R = 0.075 for 2835 reflections (Io ≥ 3σ(Io)). (Et3NH)4[Mo6O18(H2NC 6H4AsO3)2 (8): P21/c, a = 11.243(2), b = 11.335(2), c = 22.011(4) Å, β = 99.87(1)°, V = 2764(1) Å3, Z = 2, R = 0.040 for 2198 reflections (Io ≥ 3σ(Io)). [Mo2(OH)2Cl4{MeC6H 4CH2)P(OEt)(O)OP(O)2(CH2C 6H4Me)}2] · MeOH (9): P1̄, a = 8.650(2), b = 11.486(2), c = 13.684(3) Å, α = 98.44(2), β = 105.25(2), γ = 100.37(2)°, V = 1263.0(6) Å3, Z = 1, R = 0.070 for 2478 reflections (Io ≥ 3σ(Io)). [Mo4O8(C6H5AsO2Cl) 4Cl] · [MoOCl4] · 8H2O (10): P4/nnc, a = 11.385(2), c = 37.926(8) Å, V = 4916(2) Å3, Z = 4, R = 0.056 for 981 reflections (Io ≥ 3σ(Io)). [Mo4O8(CH3C6H4AsO 2Cl)4Cl] · 8CH3OH · 9H2O (11): 14, a = 11.879(2), c = 20.466(4) Å, V=2888(1) Å3, Z = 2, R = 0.062 for 968 reflections (Io ≥ 3σ(Io)). [H3NC6H4AsCl3][Mo2O 2Cl7]2 (12): P1̄, a = 10.509(2), b = 12.154(2), c = 12.461(2) Å, α = 88.09(2), β = 89.52(2), γ = 87.07(3)°, V = 1588.6(8) Å3, Z = 2, R = 0.057 for 2618 reflections (Io ≥ 3σ(Io)).

Original languageEnglish (US)
Pages (from-to)177-198
Number of pages22
JournalInorganica Chimica Acta
Volume245
Issue number2
DOIs
StatePublished - Apr 15 1996

Keywords

  • Cluster complexes
  • Crystal structures
  • Molybdenum complexes
  • Organoarsenate complexes
  • Organophosphonate complexes
  • Oxo complexes

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Investigations into the syntheses and structures of clusters of the Mo-O-REO<sub>3</sub><sup>2-</sup> systems (E = P and As)'. Together they form a unique fingerprint.

Cite this