TY - JOUR
T1 - Invertibility of Sobolev mappings under minimal hypotheses
AU - Kovalev, Leonid V.
AU - Onninen, Jani
AU - Rajala, Kai
N1 - Funding Information:
* Corresponding author. E-mail addresses: [email protected] (L.V. Kovalev), [email protected] (J. Onninen), [email protected] (K. Rajala). 1 Supported by the NSF grant DMS-0913474. 2 Supported by the NSF grant DMS-0701059. 3 Supported by the Academy of Finland.
PY - 2010
Y1 - 2010
N2 - We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant W1, n mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.
AB - We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant W1, n mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.
KW - Differential inclusion
KW - Finite distortion
KW - Local homeomorphism
UR - http://www.scopus.com/inward/record.url?scp=76849084289&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76849084289&partnerID=8YFLogxK
U2 - 10.1016/j.anihpc.2009.09.010
DO - 10.1016/j.anihpc.2009.09.010
M3 - Article
AN - SCOPUS:76849084289
SN - 0294-1449
VL - 27
SP - 517
EP - 528
JO - Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire
JF - Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire
IS - 2
ER -