Intrahippocampal infusions of anisomycin produce amnesia: Contribution of increased release of norepinephrine, dopamine, and acetylcholine

Zhenghan Qi, Paul E. Gold

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the β-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and injections of NE alone produce amnesia. These findings suggest that abnormal neurotransmitter responses may be the basis for amnesia produced by inhibition of protein synthesis. The present experiment extends these findings to the hippocampus and adds acetylcholine (ACh) to the list of neurotransmitters affected by anisomycin. Using in vivo microdialysis at the site of injection, release of NE, DA, and ACh was measured before and after injections of anisomycin into the hippocampus. Anisomycin impaired inhibitory avoidance memory when rats were tested 48 h after training and also produced substantial increases in local release of NE, DA, and ACh. In an additional experiment, pretreatment with intrahippocampal injections of propranolol prior to anisomycin and training significantly attenuated anisomycin-induced amnesia. The disruption of neurotransmitter release patterns at the site of injection appears to contribute significantly to the mechanisms underlying amnesia produced by protein synthesis inhibitors, calling into question the dominant interpretation that the amnesia reflects loss of training-initiated protein synthesis necessary for memory formation. Instead, the findings suggest that proteins needed for memory formation are available prior to an experience, and that post-translational modifications of these proteins may be sufficient to enable the formation of new memories.

Original languageEnglish (US)
Pages (from-to)308-314
Number of pages7
JournalLearning and Memory
Volume16
Issue number5
DOIs
StatePublished - May 2009
Externally publishedYes

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Cognitive Neuroscience
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Intrahippocampal infusions of anisomycin produce amnesia: Contribution of increased release of norepinephrine, dopamine, and acetylcholine'. Together they form a unique fingerprint.

Cite this