Interacting dark resonances with plasmonic meta-molecules

Pankaj K. Jha, Michael Mrejen, Jeongmin Kim, Chihhui Wu, Xiaobo Yin, Yuan Wang, Xiang Zhang

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


Dark state physics has led to a variety of remarkable phenomena in atomic physics, quantum optics, and information theory. Here, we investigate interacting dark resonance type physics in multi-layered plasmonic meta-molecules. We theoretically demonstrate that these plasmonic meta-molecules exhibit sub-natural spectral response, analogous to conventional atomic four-level configuration, by manipulating the evanescent coupling between the bright and dark elements (plasmonic atoms). Using cascaded coupling, we show nearly 4-fold reduction in linewidth of the hybridized resonance compared to a resonantly excited single bright plasmonic atom with same absorbance. In addition, we engineered the geometry of the meta-molecules to realize efficient intramolecular excitation transfer with nearly 80%, on resonant excitation, of the total absorption being localized at the second dark plasmonic atom. An analytical description of the spectral response of the structure is presented with full electrodynamics simulations to corroborate our results. Such multilayered meta-molecules can bring a new dimension to higher quality factor plasmonic resonance, efficient excitation transfer, wavelength demultiplexing, and enhanced non-linearity at nanoscale.

Original languageEnglish (US)
Article number111109
JournalApplied Physics Letters
Issue number11
StatePublished - Sep 15 2014
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Interacting dark resonances with plasmonic meta-molecules'. Together they form a unique fingerprint.

Cite this