Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease

Anna Pavlova, Diane L. Lynch, Isabella Daidone, Laura Zanetti-Polzi, Micholas Dean Smith, Chris Chipot, Daniel W. Kneller, Andrey Kovalevsky, Leighton Coates, Andrei A. Golosov, Callum J. Dickson, Camilo Velez-Vega, José S. Duca, Josh V. Vermaas, Yui Tik Pang, Atanu Acharya, Jerry M. Parks, Jeremy C. Smith, James C. Gumbart

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mproplays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mprocontains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mproas a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mproare highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored Nδ(HD) and Nϵ(HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mproin both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

Original languageEnglish (US)
Pages (from-to)1513-1527
Number of pages15
JournalChemical Science
Volume12
Issue number4
DOIs
StatePublished - Jan 28 2021
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry

Fingerprint

Dive into the research topics of 'Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease'. Together they form a unique fingerprint.

Cite this