TY - JOUR
T1 - Incongruity of detrital zircon ages of granitic bedrock and its derived alluvium
T2 - An example from the stepladder mountains, Southeastern California
AU - Bonich, Mariana B.
AU - Samson, Scott D.
AU - Fedo, Christopher M.
N1 - Publisher Copyright:
© 2017 by The University of Chicago.
PY - 2017/5
Y1 - 2017/5
N2 - The utilization of detrital zircon ages as a successful provenance indicator necessitates that source rocks and derived sediment, particularly first-cycle sediment, closely match each other in terms of age and age distribution. In order to test how closely first-cycle sediment resembles its source, zircon ages were determined from a homogenous plutonic source and sediments deposited directly on it in the Stepladder Mountains, southeastern California. U-Pb zircon ages from the pluton and proximal downstream alluvium exhibit substantial differences in proportions of Cretaceous, Mesoproterozoic, and Paleoproterozoic ages. Although geographic relations and major-element geochemistry require that the sediment was primarily derived from the weathering of the adjacent pluton, sample likeness values for zircon ages are commonly low, and age distribution differences are sufficiently large to reject the null hypothesis that they were drawn from the same population. The Stepladder pluton has abundant Cretaceous zircon, formed during magma crystallization, but also contains Mesoproterozoic and Paleoproterozoic xenocrysts inherited duringmagma generation and/or ascent. Neither preferential release of Precambrian xenocrysts nor differential preservation of Cretaceous zircon during weathering of the bedrock is viewed as a likely sole explanation for the age disparities. Addition of allochthonous Precambrian zircon, that is, aeolian grains, is viewed as a potential mechanism for the explanation of at least some of the observed age proportions. The significant differences between the abundances of zircon ages from the source and from the derived sediment suggest that considerable caution should be taken in the use of detrital zircon ages as a primary means of establishing bedrock sources in provenance analysis.
AB - The utilization of detrital zircon ages as a successful provenance indicator necessitates that source rocks and derived sediment, particularly first-cycle sediment, closely match each other in terms of age and age distribution. In order to test how closely first-cycle sediment resembles its source, zircon ages were determined from a homogenous plutonic source and sediments deposited directly on it in the Stepladder Mountains, southeastern California. U-Pb zircon ages from the pluton and proximal downstream alluvium exhibit substantial differences in proportions of Cretaceous, Mesoproterozoic, and Paleoproterozoic ages. Although geographic relations and major-element geochemistry require that the sediment was primarily derived from the weathering of the adjacent pluton, sample likeness values for zircon ages are commonly low, and age distribution differences are sufficiently large to reject the null hypothesis that they were drawn from the same population. The Stepladder pluton has abundant Cretaceous zircon, formed during magma crystallization, but also contains Mesoproterozoic and Paleoproterozoic xenocrysts inherited duringmagma generation and/or ascent. Neither preferential release of Precambrian xenocrysts nor differential preservation of Cretaceous zircon during weathering of the bedrock is viewed as a likely sole explanation for the age disparities. Addition of allochthonous Precambrian zircon, that is, aeolian grains, is viewed as a potential mechanism for the explanation of at least some of the observed age proportions. The significant differences between the abundances of zircon ages from the source and from the derived sediment suggest that considerable caution should be taken in the use of detrital zircon ages as a primary means of establishing bedrock sources in provenance analysis.
UR - http://www.scopus.com/inward/record.url?scp=85018811255&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018811255&partnerID=8YFLogxK
U2 - 10.1086/691146
DO - 10.1086/691146
M3 - Article
AN - SCOPUS:85018811255
SN - 0022-1376
VL - 125
SP - 337
EP - 350
JO - Journal of Geology
JF - Journal of Geology
IS - 3
ER -