TY - JOUR
T1 - In Situ Exploration of Dipole Field Effects on Weak Hysteresis in 3D/2D Perovskites
AU - Chen, Zeyu
AU - Wu, Fan
AU - Pathak, Rajesh
AU - Chen, Lu
AU - Bian, Jinxin
AU - Mabrouk, Sally
AU - Elam, Jeffrey W.
AU - Qiao, Quinn
N1 - Publisher Copyright:
© 2024 The Author(s). Advanced Electronic Materials published by Wiley-VCH GmbH.
PY - 2024/10
Y1 - 2024/10
N2 - This research delves into the effects of 2D layers on the functionality of 3D perovskite using lock-in amplifier-based in situ surface photovoltage (SPV) and its phase spectroscopy, with an emphasis on elucidating the connection between the tuning of dipole moments and the photocurrent hysteresis. Conventionally, the SPV of a perovskite/hole transport layer is observed to diminish as positive bias escalates. However, this trend is reversed in the case of 3D perovskite samples, where an augmentation in SPV is noted under positive bias. Notably, 3D/2D perovskite structures initially show a decrease, then an increase in SPV as bias intensifies, a phenomenon more pronounced with larger dipole moments in 2D. However, there is no linear relationship between the dipole moment and the hysteresis factor. Furthermore, using in situ light-chopping-frequency-modulated SPV and Kelvin Probe Force Microscopy, it is revealed that the dipole fields of 2D layers can hinder ion migration. This leads to efficient hole transfer and minimal photocurrent hysteresis in 3D/2D perovskites, providing strong evidence for the underlying cause of hysteresis. Additionally, these findings suggest intricate interplays among the external electric field, interface dipole moments, and surface photovoltaics, offering significant insights into perovskite optoelectronics.
AB - This research delves into the effects of 2D layers on the functionality of 3D perovskite using lock-in amplifier-based in situ surface photovoltage (SPV) and its phase spectroscopy, with an emphasis on elucidating the connection between the tuning of dipole moments and the photocurrent hysteresis. Conventionally, the SPV of a perovskite/hole transport layer is observed to diminish as positive bias escalates. However, this trend is reversed in the case of 3D perovskite samples, where an augmentation in SPV is noted under positive bias. Notably, 3D/2D perovskite structures initially show a decrease, then an increase in SPV as bias intensifies, a phenomenon more pronounced with larger dipole moments in 2D. However, there is no linear relationship between the dipole moment and the hysteresis factor. Furthermore, using in situ light-chopping-frequency-modulated SPV and Kelvin Probe Force Microscopy, it is revealed that the dipole fields of 2D layers can hinder ion migration. This leads to efficient hole transfer and minimal photocurrent hysteresis in 3D/2D perovskites, providing strong evidence for the underlying cause of hysteresis. Additionally, these findings suggest intricate interplays among the external electric field, interface dipole moments, and surface photovoltaics, offering significant insights into perovskite optoelectronics.
KW - 3D/2D perovskite
KW - hysteresis
KW - photophysical properties
KW - surface photovoltage
UR - http://www.scopus.com/inward/record.url?scp=85197428702&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85197428702&partnerID=8YFLogxK
U2 - 10.1002/aelm.202400107
DO - 10.1002/aelm.202400107
M3 - Article
AN - SCOPUS:85197428702
SN - 2199-160X
VL - 10
JO - Advanced Electronic Materials
JF - Advanced Electronic Materials
IS - 10
M1 - 2400107
ER -