TY - JOUR
T1 - In Situ Catalysis and Extraction Approach for Fast Evaluation of Heterogeneous Catalytic Efficiency
AU - Li, Qing
AU - Huang, Jiankun
AU - Zeng, Teng
AU - Zhang, Xue
AU - Li, Honglin
AU - Wen, Congying
AU - Yan, Zifeng
AU - Zeng, Jingbin
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (81501521), the Development and Innovation project of Shandong Colleges and Universities (2020KJC007) and the Fundamental Research Funds for the Central Universities (18CX02037A).
Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/7/21
Y1 - 2020/7/21
N2 - In situ monitoring of products generated by important heterogeneous catalytic reactions is of great significance for chemical industry, particularly when the products or intermediates are not sufficiently stable or occur at trace-level concentrations. It is therefore highly desirable to develop an integrated in situ catalysis and extraction method, which can simultaneously catalyze the reaction and enrich products while maintaining compatibility with analytical instrumentation. Herein, we propose an approach by depositing different types of metal nanocrystals, including gold, platinum, and palladium nanoparticles, onto fibrous silica microspheres coated fibers for integrated in situ catalysis and extraction. As a proof-of-concept, several typical chemical reactions, including the reduction of p-nitrophenol, epoxidation of styrene, oxidation of benzyl alcohol, and dechlorination of p-chlorophenol, were investigated to validate the feasibility of this method. Our results show that these coatings not only function as catalysts to accelerate the selected reactions but also serve as adsorbents to extract the reactants, intermediates, and products for direct gas chromatographic analysis, suggesting the viability of this approach for the in situ evaluation of catalytic processes. By this approach, the yield, selectivity, and kinetics of a reaction can be readily assessed. This approach can also be extended to investigate the catalytic performance of the same metal nanocrystals with different morphology, surface facet, structure, or surface functionalization. This approach will find broad generality for assessing the catalytic efficiency and selectivity of new catalysts or new chemical reactions and dynamic processes in these reactions.
AB - In situ monitoring of products generated by important heterogeneous catalytic reactions is of great significance for chemical industry, particularly when the products or intermediates are not sufficiently stable or occur at trace-level concentrations. It is therefore highly desirable to develop an integrated in situ catalysis and extraction method, which can simultaneously catalyze the reaction and enrich products while maintaining compatibility with analytical instrumentation. Herein, we propose an approach by depositing different types of metal nanocrystals, including gold, platinum, and palladium nanoparticles, onto fibrous silica microspheres coated fibers for integrated in situ catalysis and extraction. As a proof-of-concept, several typical chemical reactions, including the reduction of p-nitrophenol, epoxidation of styrene, oxidation of benzyl alcohol, and dechlorination of p-chlorophenol, were investigated to validate the feasibility of this method. Our results show that these coatings not only function as catalysts to accelerate the selected reactions but also serve as adsorbents to extract the reactants, intermediates, and products for direct gas chromatographic analysis, suggesting the viability of this approach for the in situ evaluation of catalytic processes. By this approach, the yield, selectivity, and kinetics of a reaction can be readily assessed. This approach can also be extended to investigate the catalytic performance of the same metal nanocrystals with different morphology, surface facet, structure, or surface functionalization. This approach will find broad generality for assessing the catalytic efficiency and selectivity of new catalysts or new chemical reactions and dynamic processes in these reactions.
UR - http://www.scopus.com/inward/record.url?scp=85090968704&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090968704&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.0c01668
DO - 10.1021/acs.analchem.0c01668
M3 - Article
AN - SCOPUS:85090968704
SN - 0003-2700
VL - 92
SP - 9989
EP - 9996
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 14
ER -