Abstract
Current turbomachinery design systems increasingly rely on multistage CFD as a means to diagnose designs and assess performance potential. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and further evaluation of aerodynamic performance. A scheme is proposed herein which greatly simplifies the design point blade row matching process. It is based on a three-dimensional viscous inverse method that has been extended to allow blading analysis and design in a multi-blade row environment. For computational expediency, blade row coupling is achieved through an averaging-plane approximation. The proposed method allows improvement of design point blade row matching by direct regulation of the circulation capacity of the blading within a multistage environment. During the design calculation, blade shapes are adjusted to account for inflow and outflow conditions while producing a prescribed pressure loading. Thus, it is computationally ensured that the intended pressure-loading distribution is consistent with the derived blading geometry operating in a multi-blade row environment that accounts for certain blade row interactions. The viability of the method is explored in design exercises on a 2.5-stage, highly loaded compressor.
Original language | English (US) |
---|---|
Pages | 1019-1032 |
Number of pages | 14 |
DOIs | |
State | Published - 2005 |
Event | ASME Turbo Expo 2005 - Gas Turbie Technology: Focus for the Future - Reno-Tahoe, NV, United States Duration: Jun 6 2005 → Jun 9 2005 |
Other
Other | ASME Turbo Expo 2005 - Gas Turbie Technology: Focus for the Future |
---|---|
Country/Territory | United States |
City | Reno-Tahoe, NV |
Period | 6/6/05 → 6/9/05 |
Keywords
- Compressor stage matching
- Inverse aerodynamic shape design
- Multistage turbomachinery CFD
ASJC Scopus subject areas
- General Engineering