TY - GEN
T1 - Implementation of a fully 3D system model for brain SPECT with fan-beam-collimator OSEM reconstruction with 3D total variation regularization
AU - Hongwei, Ye
AU - Krol, Andrzej
AU - Lipson, Edward D.
AU - Yao, Lu
AU - Yuesheng, Xu
AU - Wei, Lee
AU - Feiglin, David H.
PY - 2007
Y1 - 2007
N2 - In order to improve tomographically reconstructed image quality, we have implemented a fully 3D reconstruction, using an ordered subsets expectation maximization (OSEM) algorithm for fan-beam collimator (FBC) SPECT, along with a volumetric system model-fan-volume system model (FVSM), a modified attenuation compensation, a 3D depth- and angle-dependent resolution and sensitivity correction, and a 3D total variation (TV) regularization. SPECT data were acquired in a 128×64 matrix, in 120 views with a circular orbit. The numerical Zubal brain phantom was used to simulate a FBC HMPAO Tc-99m brain SPECT scan, and a low noise and scatter-free projection dataset was obtained using the SimSET Monte Carlo package. A SPECT scan for a mini-Defrise phantom and brain HMPAO SPECT scans for five patients were acquired with a triple-head gamma camera (Triad 88) equipped with a low-energy high-resolution (LEHR) FBC. The reconstructed images, obtained using clinical filtered back projection (FBP), OSEM with a linelength system model (LLSM) and 3D TV regularization, and OSEM with FVSM and 3D TV regularization were quantitatively studied. Overall improvement in the image quality has been observed, including better axial and transaxial resolution, better integral uniformity, higher contrast-to-noise ration between the gray matter and the white matter, and better accuracy and lower bias in OSEM-FVSM, compared with OSEM-LLSM and clinical FBP.
AB - In order to improve tomographically reconstructed image quality, we have implemented a fully 3D reconstruction, using an ordered subsets expectation maximization (OSEM) algorithm for fan-beam collimator (FBC) SPECT, along with a volumetric system model-fan-volume system model (FVSM), a modified attenuation compensation, a 3D depth- and angle-dependent resolution and sensitivity correction, and a 3D total variation (TV) regularization. SPECT data were acquired in a 128×64 matrix, in 120 views with a circular orbit. The numerical Zubal brain phantom was used to simulate a FBC HMPAO Tc-99m brain SPECT scan, and a low noise and scatter-free projection dataset was obtained using the SimSET Monte Carlo package. A SPECT scan for a mini-Defrise phantom and brain HMPAO SPECT scans for five patients were acquired with a triple-head gamma camera (Triad 88) equipped with a low-energy high-resolution (LEHR) FBC. The reconstructed images, obtained using clinical filtered back projection (FBP), OSEM with a linelength system model (LLSM) and 3D TV regularization, and OSEM with FVSM and 3D TV regularization were quantitatively studied. Overall improvement in the image quality has been observed, including better axial and transaxial resolution, better integral uniformity, higher contrast-to-noise ration between the gray matter and the white matter, and better accuracy and lower bias in OSEM-FVSM, compared with OSEM-LLSM and clinical FBP.
KW - 3D total variation regularization
KW - Fan-beam collimator
KW - Fan-beam fully 3D reconstruction
KW - HMPAO brain SPÉCT
UR - http://www.scopus.com/inward/record.url?scp=35148877389&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35148877389&partnerID=8YFLogxK
U2 - 10.1117/12.709560
DO - 10.1117/12.709560
M3 - Conference contribution
AN - SCOPUS:35148877389
SN - 081946628X
SN - 9780819466280
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2007
T2 - Medical Imaging 2007: Physics of Medical Imaging
Y2 - 18 February 2007 through 22 February 2007
ER -