Abstract
Activation of the transcription factor nuclear factor-kappa B (NF-κB) signaling pathway is associated with enhanced secretion of pro-inflammatory mediators and is thought to play a critical role in diseases hallmarked by inflammation, including cystic fibrosis (CF). Small nucleic acids that interfere with gene expression have been proposed as promising therapeutics for a number of diseases. However, applications have been limited by low cellular penetration and a lack of stability. Nano-sized carrier systems have been suggested as a means of improving the effectiveness of nucleic acid-based treatments. In this study, we successfully coated polysialic acid-N-trimethyl chitosan (PSA-TMC) nanoparticles with NF-κΒ decoy oligonucleotides (ODNs). To demonstrate anti-inflammatory activity, the decoy ODN-coated PSA-TMC nanoparticles were administered to an in vitro model of CF generated via interleukin-1β or P. aeruginosa lipopolysaccharides stimulation of IB3-1 bronchial epithelial cells. While free ODN and PSA-TMC nanoparticles coated with scrambled ODNs did not have substantial impacts on the inflammatory response, the decoy ODN-coated PSA-TMC nanoparticles were able to reduce the secretion of interleukin-6 and interleukin-8, pro-inflammatory mediators of CF, by the epithelial cells, particularly at longer time points. In general, the results suggest that NF-κB decoy ODN-coated TMC-PSA nanoparticles may serve as an effective method of altering the pro-inflammatory environment associated with CF.
Original language | English (US) |
---|---|
Pages (from-to) | 1622-1631 |
Number of pages | 10 |
Journal | Journal of Biomedical Materials Research - Part A |
Volume | 103 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2015 |
Keywords
- NF-κB
- cystic fibrosis
- immunomodulation
- nanoparticles
- oligonucleotides
ASJC Scopus subject areas
- Ceramics and Composites
- Biomaterials
- Biomedical Engineering
- Metals and Alloys