Ikaite abundance controlled by porewater phosphorus level: Potential links to dust and productivity

Xiaoli Zhou, Zunli Lu, Rosalind E.M. Rickaby, Eugene W. Domack, Julia S. Wellner, Hilary A. Kennedy

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Glendonites are pseudomorphs of the mineral ikaite (CaCO3·6H2O) after loss of hydration water and occur in distinctive euhedral crystalline forms, sometimes clustered as rosettes of up to tens of centimeters in diameter. While it is generally accepted that organic-rich environments, methane seeps, and high phosphate levels are important for ikaite formation, glendonite occurrences in ancient sedimentary sequences are widely considered to reflect near-freezing temperatures, even at high latitudes during periods of greenhouse climates. To fully understand the paleoenvironmental significance of glendonites, a comprehensive examination of the modern ikaite setting is necessary. Temperature is the most important parameter that has been quantitatively constrained for the presence of ikaite. Low bottom-water temperature, while a required condition for formation of the mineral, is not adequate for its growth; other controls are necessary to explain the absence of ikaite in many cold environments. In this study, we discuss the control of carbonate chemistry on ikaite formation. Our compilation of geochemical data from sediment cores with well-preserved ikaite provide further evidence for the importance of phosphate. A phosphate concentration above ∼400 μM in shallow and cold porewater may be the requisite parameter for extensive ikaite precipitation. Thus, abundant glendonites in ancient successions mark past periods and regions of elevated porewater phosphorus concentrations, which may also be related to high surface productivity and/or iron fertilization.

Original languageEnglish (US)
Pages (from-to)269-281
Number of pages13
JournalJournal of Geology
Volume123
Issue number3
DOIs
StatePublished - Jun 27 2015

ASJC Scopus subject areas

  • Geology

Fingerprint Dive into the research topics of 'Ikaite abundance controlled by porewater phosphorus level: Potential links to dust and productivity'. Together they form a unique fingerprint.

Cite this