Hyporheic flow path response to hydraulic jumps at river steps: Hydrostatic model simulations

T. Endreny, L. Lautz, D. Siegel

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


This research examined hydrostatic groundwater model (MODFLOW) predictive adequacy and sensitivity in simulating hyporheic flow paths across a river step with a hydraulic jump. In a companion paper, we used flume and hydrodynamic model analysis to develop a refined conceptual model depicting these flow paths with zones of downwelling and upstream-directed flux below the step. The previous coarse conceptual model predicted uniform downstream-directed upwelling below the step. The hydrostatic model accurately predicted the downwelling and upstream-directed fluxes beneath the wave and jump but failed to predict the plunge pool downwelling, which is driven by dynamic pressures. Sensitivity tests varied riverbed topography and water surface profile geometry for a river with 1% slopes, 10 cm flow depths, and 50-150 cm long jets and jumps. The flow paths below the jet-jump region were driven by hydrostatic pressures and were highly sensitive to water surface profile and riverbed topography parameters. Failure to simulate the hydraulic jump caused errors in hyporheic flow path predictions beneath the jump region (∼1 m long by ∼0.5 m deep). If the jump was poorly parameterized, several meters of riverbed flow paths could be erroneously modeled as pointing upstream. The hyporheic zone may contain a spatial mosaic of aerobic and anaerobic waters regulating nutrient transformations and biologic productivity. Accurate parameterization of hydraulic jumps in hyporheic simulation has the potential to improve predictions and explain heterogeneous subsurface flow paths and associated nutrient patterns and ecosystem functions.

Original languageEnglish (US)
Article numberW02518
JournalWater Resources Research
Issue number2
StatePublished - 2011

ASJC Scopus subject areas

  • Water Science and Technology


Dive into the research topics of 'Hyporheic flow path response to hydraulic jumps at river steps: Hydrostatic model simulations'. Together they form a unique fingerprint.

Cite this