Hydrothermal synthesis, structural chemistry, and magnetic properties of materials of the MII/triazolate/anion family, where MII = Mn, Fe, and Ni

Wayne Ouellette, Andrey V. Prosvirin, Jamie Valeich, Kim R. Dunbar, Jon Zubieta

Research output: Contribution to journalArticlepeer-review

112 Scopus citations

Abstract

Hydrothermal chemistry has been exploited in the preparation of a series of manganese(II), iron(II), and nickel(II) triazolate frameworks, [Mn 7(trz)8(CH3CO2)4(OH) 2]·2.5H2O (1·2.5H2O), [Mn 5(Htrz)2(SO4)4(OH)2] (2), [Fe5(Htrz)2(SO4)4-(OH)2] (3), [Fe3(Htrz)3(HSO4)(SO4) 2(OH)]·H2O (4·H2O), [Ni 3(trz)3(OH)3(H2O) 4]·5H2O (5·5H2O), and [Ni 3(trz)5(OH)]·2.5H2O (6·2.5H 2O). The materials all exhibit three-dimensional structures, reflecting the tendency of triazole/triazolate ligands to bridge multiple metal sites. A prominent characteristic of the structures is the presence of embedded metal clusters as building blocks: heptanuclear MnII units in 1, pentanuclear MII sites in 2 and 3, and trinuclear MII clusters in 4 and 5. The presence of the pentanuclear and trinuclear clusters of magnetic metal cations in 2-5 is reflected in the unusual magnetic characteristics of these materials, all of which exhibit spin frustration. The compound 5·5H2O reversibly desorbs/sorbs solvent. However, the dehydrated phase does not adsorb methanol, N2, O2, or H2, presumably as a consequence of the highly polar void volume and the narrow channels connecting the larger cavities of the void structure.

Original languageEnglish (US)
Pages (from-to)9067-9082
Number of pages16
JournalInorganic Chemistry
Volume46
Issue number22
DOIs
StatePublished - Oct 29 2007

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Hydrothermal synthesis, structural chemistry, and magnetic properties of materials of the MII/triazolate/anion family, where MII = Mn, Fe, and Ni'. Together they form a unique fingerprint.

Cite this