Hydrodynamics of isotropic and liquid crystalline active polymer solutions

Aphrodite Ahmadi, M. C. Marchetti, T. B. Liverpool

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

We describe the large-scale collective behavior of solutions of polar biofilaments and stationary and mobile crosslinkers. Both mobile and stationary crosslinkers induce filament alignment promoting either polar or nematic order. In addition, mobile crosslinkers, such as clusters of motor proteins, exchange forces and torques among the filaments and render the homogeneous states unstable via filament bundling. We start from a Smoluchowski equation for rigid filaments in solutions, where pairwise crosslink-mediated interactions among the filaments yield translational and rotational currents. The large-scale properties of the system are described in terms of continuum equations for filament and motor densities, polarization, and alignment tensor obtained by coarse-graining the Smoluchovski equation. The possible homogeneous and inhomogeneous states of the systems are obtained as stable solutions of the dynamical equations and are characterized in terms of experimentally accessible parameters. We make contact with work by other authors and show that our model allows for an estimate of the various parameters in the hydrodynamic equations in terms of physical properties of the crosslinkers.

Original languageEnglish (US)
Article number061913
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume74
Issue number6
DOIs
StatePublished - 2006

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Hydrodynamics of isotropic and liquid crystalline active polymer solutions'. Together they form a unique fingerprint.

Cite this