Humanoid Cognitive robots that learn by imitating: Implications for consciousness studies

James A. Reggia, Garrett E. Katz, Gregory P. Davis

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

While the concept of a conscious machine is intriguing, producing such a machine remains controversial and challenging. Here, we describe how our work on creating a humanoid cognitive robot that learns to perform tasks via imitation learning relates to this issue. Our discussion is divided into three parts. First, we summarize our previous framework for advancing the understanding of the nature of phenomenal consciousness. This framework is based on identifying computational correlates of consciousness. Second, we describe a cognitive robotic system that we recently developed that learns to perform tasks by imitating human-provided demonstrations. This humanoid robot uses cause-effect reasoning to infer a demonstrator's intentions in performing a task, rather than just imitating the observed actions verbatim. In particular, its cognitive components center on top-down control of a working memory that retains the explanatory interpretations that the robot constructs during learning. Finally, we describe our ongoing work that is focused on converting our robot's imitation learning cognitive system into purely neurocomputational form, including both its low-level cognitive neuromotor components, its use of working memory, and its causal reasoning mechanisms. Based on our initial results, we argue that the top-down cognitive control of working memory, and in particular its gating mechanisms, is an important potential computational correlate of consciousness in humanoid robots. We conclude that developing high-level neurocognitive control systems for cognitive robots and using them to search for computational correlates of consciousness provides an important approach to advancing our understanding of consciousness, and that it provides a credible and achievable route to ultimately developing a phenomenally conscious machine.

Original languageEnglish (US)
Article number1
JournalFrontiers Robotics AI
Volume5
Issue numberJAN
DOIs
StatePublished - 2018
Externally publishedYes

Keywords

  • Artificial consciousness
  • Cognitive phenomenology
  • Cognitive robots
  • Computational explanatory gap
  • Imitation learning
  • Machine consciousness
  • Neural network gating mechanisms
  • Working memory

ASJC Scopus subject areas

  • Computer Science Applications
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Humanoid Cognitive robots that learn by imitating: Implications for consciousness studies'. Together they form a unique fingerprint.

Cite this