TY - JOUR
T1 - H1-estimates of Jacobians by subdeterminants
AU - Iwaniec, Tadeusz
AU - Onninen, Jani
PY - 2002
Y1 - 2002
N2 - Let f : Ω → ℝn be a mapping in the Sobolev space, Wloc1,n-1 (Ω, ℝn), n ≥ 2. We assume that the cofactors of the differential matrix Df (x) belong to Ln/n-1 (Ω). Then, among other things, we prove that the Jacobian determinant detDf lies in the Hardy space H1 (Ω).
AB - Let f : Ω → ℝn be a mapping in the Sobolev space, Wloc1,n-1 (Ω, ℝn), n ≥ 2. We assume that the cofactors of the differential matrix Df (x) belong to Ln/n-1 (Ω). Then, among other things, we prove that the Jacobian determinant detDf lies in the Hardy space H1 (Ω).
UR - http://www.scopus.com/inward/record.url?scp=0035981390&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035981390&partnerID=8YFLogxK
U2 - 10.1007/s00208-002-0341-5
DO - 10.1007/s00208-002-0341-5
M3 - Article
AN - SCOPUS:0035981390
SN - 0025-5831
VL - 324
SP - 341
EP - 358
JO - Mathematische Annalen
JF - Mathematische Annalen
IS - 2
ER -