TY - JOUR
T1 - High-resolution seismic stratigraphy of Late Pleistocene Glacial Lake Iroquois and its Holocene successor
T2 - Oneida Lake, New York
AU - Zaremba, Nicholas J.
AU - Scholz, Christopher A.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/11/15
Y1 - 2019/11/15
N2 - Oneida Lake, New York, is the remnant of Glacial Lake Iroquois, a large proglacial lake that delivered fresh water to the Atlantic Ocean during the last deglaciation. The formation of Glacial Lake Iroquois and its subsequent drainage into the Atlantic Ocean via the Mohawk Valley was a significant shift in the routing of Laurentide Ice Sheet meltwater to the east instead of south via the Allegheny or Susquehanna Rivers. Catastrophic drainage of Glacial Lake Iroquois into the Atlantic Ocean via the Champlain Valley is interpreted as the meltwater pulse responsible for the Intra-Allerod cold stadial. Therefore, understanding the evolution of Glacial Lake Iroquois has significant implications for understanding late Pleistocene paleoclimate. High-resolution CHIRP seismic reflection data provides insight into the evolution of Glacial Lake Iroquois and Oneida Lake. Three seismic units image distinct stages of the Oneida Basin. Unit 1 is interpreted as proglacial lake deposits that overlie glacial till. Unit 2 is interpreted as sediments deposited when the Oneida Basin became isolated from Glacial Lake Iroquois and Unit 3 is interpreted as lacustrine sediments of the modern lake. Distally sourced turbidites possibly triggered by seismic activity or ice sheet meltwater pulses are represented as reflection-free acoustic facies that infill topographic lows and range in thickness from ~1–5 m within otherwise conformable proglacial lake deposits. Local slump deposits imaged at the boundary between Unit 1 and 2 were likely triggered by the drainage of Glacial Lake Iroquois. Wave cut terraces indicative of a low stand on the upper bounding surface of Unit 2 are likely the result of drier conditions during the Holocene Hypsithermal. Furthermore, preservation of this low stand suggests a rapid rise in lake level, possibly the result of the same transition to a wetter climate responsible for the Nipissing transgression observed in the Laurentian Great lakes.
AB - Oneida Lake, New York, is the remnant of Glacial Lake Iroquois, a large proglacial lake that delivered fresh water to the Atlantic Ocean during the last deglaciation. The formation of Glacial Lake Iroquois and its subsequent drainage into the Atlantic Ocean via the Mohawk Valley was a significant shift in the routing of Laurentide Ice Sheet meltwater to the east instead of south via the Allegheny or Susquehanna Rivers. Catastrophic drainage of Glacial Lake Iroquois into the Atlantic Ocean via the Champlain Valley is interpreted as the meltwater pulse responsible for the Intra-Allerod cold stadial. Therefore, understanding the evolution of Glacial Lake Iroquois has significant implications for understanding late Pleistocene paleoclimate. High-resolution CHIRP seismic reflection data provides insight into the evolution of Glacial Lake Iroquois and Oneida Lake. Three seismic units image distinct stages of the Oneida Basin. Unit 1 is interpreted as proglacial lake deposits that overlie glacial till. Unit 2 is interpreted as sediments deposited when the Oneida Basin became isolated from Glacial Lake Iroquois and Unit 3 is interpreted as lacustrine sediments of the modern lake. Distally sourced turbidites possibly triggered by seismic activity or ice sheet meltwater pulses are represented as reflection-free acoustic facies that infill topographic lows and range in thickness from ~1–5 m within otherwise conformable proglacial lake deposits. Local slump deposits imaged at the boundary between Unit 1 and 2 were likely triggered by the drainage of Glacial Lake Iroquois. Wave cut terraces indicative of a low stand on the upper bounding surface of Unit 2 are likely the result of drier conditions during the Holocene Hypsithermal. Furthermore, preservation of this low stand suggests a rapid rise in lake level, possibly the result of the same transition to a wetter climate responsible for the Nipissing transgression observed in the Laurentian Great lakes.
KW - Holocene Hypsithermal
KW - Intra-Allerod
KW - Laurentide ice sheet
KW - Meltwater pulse
KW - Mohawk Valley
KW - Proglacial lake deposits
UR - http://www.scopus.com/inward/record.url?scp=85070242507&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070242507&partnerID=8YFLogxK
U2 - 10.1016/j.palaeo.2019.109286
DO - 10.1016/j.palaeo.2019.109286
M3 - Article
AN - SCOPUS:85070242507
SN - 0031-0182
VL - 534
JO - Palaeogeography, Palaeoclimatology, Palaeoecology
JF - Palaeogeography, Palaeoclimatology, Palaeoecology
M1 - 109286
ER -