TY - JOUR
T1 - Hydrogeology of an alpine talus aquifer
T2 - Cordillera Blanca, Peru
AU - Glas, Robin
AU - Lautz, Laura
AU - McKenzie, Jeffrey
AU - Moucha, Robert
AU - Chavez, Daniel
AU - Mark, Bryan
AU - Lane, John W.
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - The dramatic loss of glacial mass in low latitudes is causing shifts in downstream water availability and use during the driest months of the year. The world’s largest concentration of tropical glaciers lies in the Cordillera Blanca range of Peru, where glacial runoff is declining and regional stresses are emerging over water resources. Throughout the Cordillera Blanca, groundwater inputs from alpine meadow–talus complexes, locally known as pampas, supply proglacial streams with up to 80% of their flow during the region’s dry season. Structural knowledge of the pampa aquifers is needed to estimate their drainable groundwater storage capacity and residence time, to elucidate the role and importance of alpine groundwater storage in the regional water budget of the Cordillera Blanca. To understand the structure of these proglacial aquifers, multiple near-surface geophysical methods were implemented in a proglacial valley near dense networks of spring-fed tributaries. Geophysical results and borehole logs suggest groundwater is stored in a confined aquifer composed of buried talus deposits overlain by lacustrine clay, while deeper portions of the unit, 10–15 m in depth, are relatively clay-free and more hydraulically conductive. Based on these findings and assumptions of aquifer porosity, the pampas of the Callejon de Huaylas may store from 0.006 to 0.02 km3 of groundwater. Furthermore, these findings suggest that the talus aquifers of the Cordillera Blanca were formed in proglacial lakes, followed by infilling with fine lacustrine sediments that confine lower units and allow for groundwater discharge to springs via macropores and preferential flow.
AB - The dramatic loss of glacial mass in low latitudes is causing shifts in downstream water availability and use during the driest months of the year. The world’s largest concentration of tropical glaciers lies in the Cordillera Blanca range of Peru, where glacial runoff is declining and regional stresses are emerging over water resources. Throughout the Cordillera Blanca, groundwater inputs from alpine meadow–talus complexes, locally known as pampas, supply proglacial streams with up to 80% of their flow during the region’s dry season. Structural knowledge of the pampa aquifers is needed to estimate their drainable groundwater storage capacity and residence time, to elucidate the role and importance of alpine groundwater storage in the regional water budget of the Cordillera Blanca. To understand the structure of these proglacial aquifers, multiple near-surface geophysical methods were implemented in a proglacial valley near dense networks of spring-fed tributaries. Geophysical results and borehole logs suggest groundwater is stored in a confined aquifer composed of buried talus deposits overlain by lacustrine clay, while deeper portions of the unit, 10–15 m in depth, are relatively clay-free and more hydraulically conductive. Based on these findings and assumptions of aquifer porosity, the pampas of the Callejon de Huaylas may store from 0.006 to 0.02 km3 of groundwater. Furthermore, these findings suggest that the talus aquifers of the Cordillera Blanca were formed in proglacial lakes, followed by infilling with fine lacustrine sediments that confine lower units and allow for groundwater discharge to springs via macropores and preferential flow.
KW - Alpine groundwater
KW - Climate change
KW - Cordillera Blanca
KW - Geophysical methods
KW - Peru
UR - http://www.scopus.com/inward/record.url?scp=85066157226&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066157226&partnerID=8YFLogxK
U2 - 10.1007/s10040-019-01982-5
DO - 10.1007/s10040-019-01982-5
M3 - Article
AN - SCOPUS:85066157226
SN - 1431-2174
VL - 27
SP - 2137
EP - 2154
JO - Hydrogeology Journal
JF - Hydrogeology Journal
IS - 6
ER -