Helicopter classification via period estimation and time-frequency masks

Rui Zhang, Gang Li, Carmine Clemente, Pramod K. Varshney

Research output: Chapter in Book/Entry/PoemConference contribution

6 Scopus citations

Abstract

The rotation of blades of a helicopter induces a Doppler modulation around the main Doppler shift, which is commonly called the micro-Doppler signature and can be used for target classification. In this paper, an automatic helicopter classification method is proposed by estimating the period of the micro-Doppler signature and identifying the number of blades via time-frequency masks. The advantages of this method are threefold: (1) it determines the number of blades automatically; (2) it significantly reduces the computational burden compared to the classical model dictionary-based classification methods; (3) it is robust with respect to the inclination of the helicopter. The effectiveness of the proposed approach is validated by using both synthetic and real data.

Original languageEnglish (US)
Title of host publication2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages61-64
Number of pages4
ISBN (Electronic)9781479919635
DOIs
StatePublished - 2015
Event6th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015 - Cancun, Mexico
Duration: Dec 13 2015Dec 16 2015

Publication series

Name2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015

Other

Other6th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015
Country/TerritoryMexico
CityCancun
Period12/13/1512/16/15

ASJC Scopus subject areas

  • Signal Processing
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Helicopter classification via period estimation and time-frequency masks'. Together they form a unique fingerprint.

Cite this