TY - GEN
T1 - Hardware-driven nonlinear activation for stochastic computing based deep convolutional neural networks
AU - Li, Ji
AU - Yuan, Zihao
AU - Li, Zhe
AU - Ding, Caiwen
AU - Ren, Ao
AU - Qiu, Qinru
AU - Draper, Jeffrey
AU - Wang, Yanzhi
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/6/30
Y1 - 2017/6/30
N2 - Recently, Deep Convolutional Neural Networks (DCNNs) have made unprecedented progress, achieving the accuracy close to, or even better than human-level perception in various tasks. There is a timely need to map the latest software DCNNs to application-specific hardware, in order to achieve orders of magnitude improvement in performance, energy efficiency and compactness. Stochastic Computing (SC), as a low-cost alternative to the conventional binary computing paradigm, has the potential to enable massively parallel and highly scalable hardware implementation of DCNNs. One major challenge in SC based DCNNs is designing accurate nonlinear activation functions, which have a significant impact on the network-level accuracy but cannot be implemented accurately by existing SC computing blocks. In this paper, we design and optimize SC based neurons, and we propose highly accurate activation designs for the three most frequently used activation functions in software DCNNs, i.e, hyperbolic tangent, logistic, and rectified linear units. Experimental results on LeNet-5 using MNIST dataset demonstrate that compared with a binary ASIC hardware DCNN, the DCNN with the proposed SC neurons can achieve up to 61X, 151X, and 2X improvement in terms of area, power, and energy, respectively, at the cost of small precision degradation. In addition, the SC approach achieves up to 21X and 41X of the area, 41X and 72X of the power, and 198200X and 96443X of the energy, compared with CPU and GPU approaches, respectively, while the error is increased by less than 3.07%. ReLU activation is suggested for future SC based DCNNs considering its superior performance under a small bit stream length.
AB - Recently, Deep Convolutional Neural Networks (DCNNs) have made unprecedented progress, achieving the accuracy close to, or even better than human-level perception in various tasks. There is a timely need to map the latest software DCNNs to application-specific hardware, in order to achieve orders of magnitude improvement in performance, energy efficiency and compactness. Stochastic Computing (SC), as a low-cost alternative to the conventional binary computing paradigm, has the potential to enable massively parallel and highly scalable hardware implementation of DCNNs. One major challenge in SC based DCNNs is designing accurate nonlinear activation functions, which have a significant impact on the network-level accuracy but cannot be implemented accurately by existing SC computing blocks. In this paper, we design and optimize SC based neurons, and we propose highly accurate activation designs for the three most frequently used activation functions in software DCNNs, i.e, hyperbolic tangent, logistic, and rectified linear units. Experimental results on LeNet-5 using MNIST dataset demonstrate that compared with a binary ASIC hardware DCNN, the DCNN with the proposed SC neurons can achieve up to 61X, 151X, and 2X improvement in terms of area, power, and energy, respectively, at the cost of small precision degradation. In addition, the SC approach achieves up to 21X and 41X of the area, 41X and 72X of the power, and 198200X and 96443X of the energy, compared with CPU and GPU approaches, respectively, while the error is increased by less than 3.07%. ReLU activation is suggested for future SC based DCNNs considering its superior performance under a small bit stream length.
KW - Activation Function
KW - Deep Convolutional Neural Networks
KW - Deep Learning
KW - Stochastic Computing
UR - http://www.scopus.com/inward/record.url?scp=85021206311&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85021206311&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2017.7965993
DO - 10.1109/IJCNN.2017.7965993
M3 - Conference contribution
AN - SCOPUS:85021206311
T3 - Proceedings of the International Joint Conference on Neural Networks
SP - 1230
EP - 1236
BT - 2017 International Joint Conference on Neural Networks, IJCNN 2017 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 International Joint Conference on Neural Networks, IJCNN 2017
Y2 - 14 May 2017 through 19 May 2017
ER -