Gut bacterial communities and their contribution to performance of specialist Altica flea beetles

Jing Wei, Kari A. Segraves, Wen Zhu Li, Xing Ke Yang, Huai Jun Xue

Research output: Contribution to journalArticlepeer-review

Abstract

Host plant shifts are a common mode of speciation in herbivorous insects. Although insects can evolve adaptations to successfully incorporate a new host plant, it is becoming increasingly recognized that the gut bacterial community may play a significant role in allowing insects to detoxify novel plant chemical defenses. Here, we examined differences in gut bacterial communities between Altica flea beetle species that feed on phylogenetically unrelated host plants in sympatry. We surveyed the gut bacterial communities of three closely related flea beetles from multiple locations using 16S rRNA amplicon sequencing. The results showed that the beetle species shared a high proportion (80.7%) of operational taxonomic units. Alpha-diversity indicators suggested that gut bacterial diversity did not differ among host species, whereas geography had a significant effect on bacterial diversity. In contrast, analyses of beta-diversity showed significant differences in gut bacterial composition among beetle species when we used species composition and relative abundance metrics, but there was no difference in composition when species presence/absence and phylogenetic distance indices were used. Within host beetle species, gut bacterial composition varied significantly among sites. A metagenomic functionality analysis predicted that the gut microbes had functions involved in xenobiotic biodegradation and metabolism as well as metabolism of terpenoids and polyketides. These predictions, however, did not differ among beetle host species. Antibiotic curing experiments showed that development time was significantly prolonged, and there was a significant decline in body weight of newly emerged adults in beetles lacking gut bacteria, suggesting the beetles may receive a potential benefit from the gut microbe-insect interaction. On the whole, our results suggest that although the gut bacterial community did not show clear host-specific patterns among Altica species, spatiotemporal variability is an important determinant of gut bacterial communities. Furthermore, the similarity of communities among these beetle species suggests that microbial facilitation may not be a determinant of host plant shifts in Altica.

Original languageEnglish (US)
Pages (from-to)946-959
Number of pages14
JournalMicrobial Ecology
Volume80
Issue number4
DOIs
StatePublished - Nov 1 2020

Keywords

  • Adaptation
  • Antibiotic treatment
  • Body weight
  • Development time
  • Speciation

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Soil Science

Fingerprint Dive into the research topics of 'Gut bacterial communities and their contribution to performance of specialist Altica flea beetles'. Together they form a unique fingerprint.

Cite this