Abstract
We apply optimization algorithms to the problem of finding ground states for crystalline surfaces and flux lines arrays in presence of disorder. The algorithms provide ground states in polynomial time, which provides for a more precise study of the interface widths than from Monte Carlo simulations at finite temperature. Using d=2 systems up to size 4202, with a minimum of 2 × 103 realizations at each size, we find very strong evidence for a ln2(L) super-rough state at low temperatures.
Original language | English (US) |
---|---|
Pages (from-to) | 3204-3207 |
Number of pages | 4 |
Journal | Physical Review Letters |
Volume | 77 |
Issue number | 15 |
DOIs | |
State | Published - 1996 |
ASJC Scopus subject areas
- General Physics and Astronomy