Gradient shrinking Ricci solitons of half harmonic Weyl curvature

Jia Yong Wu, Peng Wu, William Wylie

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural generalizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature, then except for three examples, it has to be an Einstein metric with positive scalar curvature. Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with δW±= 0 is either Einstein, or a finite quotient of S3× R, S2× R2 or R4. We also prove that a four-dimensional gradient Ricci soliton with constant scalar curvature is either Kähler–Einstein, or a finite quotient of M× C, where M is a Riemann surface. The method of our proof is to construct a weighted subharmonic function using curvature decompositions and the Weitzenböck formula for half Weyl curvature, and the method was motivated by previous work (Gursky and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of three-nonnegative curvature operator 2013; Trans Am Math Soc 369:1079–1096, 2017; Yang in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on the rigidity of gradient Ricci solitons.

Original languageEnglish (US)
Article number141
JournalCalculus of Variations and Partial Differential Equations
Volume57
Issue number5
DOIs
StatePublished - Oct 1 2018

Fingerprint

Ricci Soliton
Shrinking
Solitons
Four-manifolds
Harmonic
Curvature
Gradient
Albert Einstein
Einstein Metrics
Rigidity
Quotient
Positive Scalar Curvature
Subharmonic Function
Constant Scalar Curvature
Metric
Nonnegative Curvature
Positive Curvature
Sectional Curvature
Riemann Surface
Decomposition

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Cite this

Gradient shrinking Ricci solitons of half harmonic Weyl curvature. / Wu, Jia Yong; Wu, Peng; Wylie, William.

In: Calculus of Variations and Partial Differential Equations, Vol. 57, No. 5, 141, 01.10.2018.

Research output: Contribution to journalArticle

@article{6cb32688c7a644dfbc47b8a0d1b0ee4c,
title = "Gradient shrinking Ricci solitons of half harmonic Weyl curvature",
abstract = "Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural generalizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature, then except for three examples, it has to be an Einstein metric with positive scalar curvature. Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with δW±= 0 is either Einstein, or a finite quotient of S3× R, S2× R2 or R4. We also prove that a four-dimensional gradient Ricci soliton with constant scalar curvature is either K{\"a}hler–Einstein, or a finite quotient of M× C, where M is a Riemann surface. The method of our proof is to construct a weighted subharmonic function using curvature decompositions and the Weitzenb{\"o}ck formula for half Weyl curvature, and the method was motivated by previous work (Gursky and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of three-nonnegative curvature operator 2013; Trans Am Math Soc 369:1079–1096, 2017; Yang in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on the rigidity of gradient Ricci solitons.",
author = "Wu, {Jia Yong} and Peng Wu and William Wylie",
year = "2018",
month = "10",
day = "1",
doi = "10.1007/s00526-018-1415-x",
language = "English (US)",
volume = "57",
journal = "Calculus of Variations and Partial Differential Equations",
issn = "0944-2669",
publisher = "Springer New York",
number = "5",

}

TY - JOUR

T1 - Gradient shrinking Ricci solitons of half harmonic Weyl curvature

AU - Wu, Jia Yong

AU - Wu, Peng

AU - Wylie, William

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural generalizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature, then except for three examples, it has to be an Einstein metric with positive scalar curvature. Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with δW±= 0 is either Einstein, or a finite quotient of S3× R, S2× R2 or R4. We also prove that a four-dimensional gradient Ricci soliton with constant scalar curvature is either Kähler–Einstein, or a finite quotient of M× C, where M is a Riemann surface. The method of our proof is to construct a weighted subharmonic function using curvature decompositions and the Weitzenböck formula for half Weyl curvature, and the method was motivated by previous work (Gursky and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of three-nonnegative curvature operator 2013; Trans Am Math Soc 369:1079–1096, 2017; Yang in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on the rigidity of gradient Ricci solitons.

AB - Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural generalizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature, then except for three examples, it has to be an Einstein metric with positive scalar curvature. Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with δW±= 0 is either Einstein, or a finite quotient of S3× R, S2× R2 or R4. We also prove that a four-dimensional gradient Ricci soliton with constant scalar curvature is either Kähler–Einstein, or a finite quotient of M× C, where M is a Riemann surface. The method of our proof is to construct a weighted subharmonic function using curvature decompositions and the Weitzenböck formula for half Weyl curvature, and the method was motivated by previous work (Gursky and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of three-nonnegative curvature operator 2013; Trans Am Math Soc 369:1079–1096, 2017; Yang in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on the rigidity of gradient Ricci solitons.

UR - http://www.scopus.com/inward/record.url?scp=85052629689&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052629689&partnerID=8YFLogxK

U2 - 10.1007/s00526-018-1415-x

DO - 10.1007/s00526-018-1415-x

M3 - Article

VL - 57

JO - Calculus of Variations and Partial Differential Equations

JF - Calculus of Variations and Partial Differential Equations

SN - 0944-2669

IS - 5

M1 - 141

ER -