GISNet:Graph-Based Information Sharing Network for Vehicle Trajectory Prediction

Ziyi Zhao, Haowen Fang, Zhao Jin, Qinru Qiu

Research output: Chapter in Book/Entry/PoemConference contribution

42 Scopus citations

Abstract

The trajectory prediction is a critical and challenging problem in the design of an autonomous driving system. Many AI-oriented companies, such as Google Waymo, Uber and DiDi, are investigating more accurate vehicle trajectory prediction algorithms. However, the prediction performance is governed by lots of entangled factors, such as the stochastic behaviors of surrounding vehicles, historical information of self-trajectory, and relative positions of neighbors, etc. In this paper, we propose a novel graph-based information sharing network (GISNet) that allows the information sharing between the target vehicle and its surrounding vehicles. Meanwhile, the model encodes the historical trajectory information of all the vehicles in the scene. Experiments are carried out on the public NGSIM US-101 and I-80 Dataset and the prediction performance is measured by the Root Mean Square Error (RMSE). The quantitative and qualitative experimental results show that our model significantly improves the trajectory prediction accuracy, by up to 50.00%, compared to existing models.

Original languageEnglish (US)
Title of host publication2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728169262
DOIs
StatePublished - Jul 2020
Event2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, United Kingdom
Duration: Jul 19 2020Jul 24 2020

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2020 International Joint Conference on Neural Networks, IJCNN 2020
Country/TerritoryUnited Kingdom
CityVirtual, Glasgow
Period7/19/207/24/20

Keywords

  • ADS
  • GNN
  • Information Sharing
  • Vehicle Tra-jectory Prediction

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'GISNet:Graph-Based Information Sharing Network for Vehicle Trajectory Prediction'. Together they form a unique fingerprint.

Cite this