Geometry modeling for unstructured mesh adaptation

Michael A. Park, Bil Kleb, William T. Jones, Joshua A. Krakos, Todd Michal, Adrien Loseille, Robert Haimes, John F. Dannenhoffer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

The quantification and control of discretization error is critical to obtaining reliable simulation results. Adaptive mesh techniques have the potential to automate discretization error control, but have made limited impact on production analysis workflow. Recent progress has matured a number of independent implementations of flow solvers, error estimation methods, and anisotropic mesh adaptation mechanics. However, the poor integration of initial mesh generation and adaptive mesh mechanics to typical sources of geometry has hindered adoption of adaptive mesh techniques, where these geometries are often created in Mechanical Computer-Aided Design (MCAD) systems. The difficulty of this coupling is compounded by two factors: the inherent complexity of the model (e.g., large range of scales, bodies in proximity, details not required for analysis) and unintended geometry construction artifacts (e.g., translation, uneven parameterization, degeneracy, self-intersection, sliver faces, gaps, large tolerances between topological elements, local high curvature to enforce continuity). Manual preparation of geometry is commonly employed to enable fixed-grid and adaptive-grid workflows by reducing the severity and negative impacts of these construction artifacts, but manual process interaction inhibits workflow automation. Techniques to permit the use of complex geometry models and reduce the impact of geometry construction artifacts on unstructured grid workflows are presented. Two complex MCAD models from the AIAA Sonic Boom and High Lift Prediction Workshop are shown to demonstrate the utility of the current approach.

Original languageEnglish (US)
Title of host publicationAIAA Aviation 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105890
DOIs
StatePublished - 2019
EventAIAA Aviation 2019 Forum - Dallas, United States
Duration: Jun 17 2019Jun 21 2019

Publication series

NameAIAA Aviation 2019 Forum

Conference

ConferenceAIAA Aviation 2019 Forum
CountryUnited States
CityDallas
Period6/17/196/21/19

ASJC Scopus subject areas

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Geometry modeling for unstructured mesh adaptation'. Together they form a unique fingerprint.

Cite this