Abstract
In this paper, we study fixed point proximity algorithms for a TVL1 restoration model recovering blurred images with impulsive noise, and image inpainting. The model that minimizes the sum of a data fidelity term in the l1 -norm, a term in l2 -norm and total-variation regularization term is strictly convex. We obtain the solution of the model through finding a fixed point of a nonlinear mapping expressed in terms of the proximity operator of the l1-norm or the l2-norm, each of which is explicitly given. The non-expansivity of the mapping is also analysed theoretically. This formulation naturally leads to fixed-point algorithms for numerical treatment of the model. Numerical experiments demonstrate that the proposed algorithms perform favourably.
Original language | English (US) |
---|---|
Pages (from-to) | 1829-1844 |
Number of pages | 16 |
Journal | International Journal of Computer Mathematics |
Volume | 95 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2 2018 |
Keywords
- 35A15
- 49J40
- 68U10
- 94A08
- Total variation
- deblurring
- impulsive noise
- inpainting
- proximity operator
ASJC Scopus subject areas
- Computer Science Applications
- Computational Theory and Mathematics
- Applied Mathematics