Finite-time Stable Pose Estimation for Unmanned Vehicles in GNSS-denied Environments using an Onboard Camera

Abhijit Dongare, Reza Hamrah, Amit K. Sanyal

Research output: Chapter in Book/Entry/PoemConference contribution

Abstract

This work presents a finite-time stable pose estimation scheme for autonomous aerospace vehicles undergoing rotational and translational motion in three dimensions, using measurements from onboard optical sensors. The estimation scheme is designed as an observer for the pose (position and orientation) and velocities of a rigid body in real-time and is obtained through a Lyapunov analysis that shows its stability in finite time. This observer is designed directly on the Lie group of rigid body motions, SE(3), and does not require a dynamics model for the vehicle to update the state estimates. These features enable it to estimate arbitrary rotational and translational motions without encountering singularities or the unwinding phenomenon, and be readily applied to a vehicle with any sensor-actuator configuration without requiring extensive re-tuning. The proposed estimator is discretized using the framework of geometric mechanics for numerical implementations. Numerical simulation results validate the stability of this pose estimation scheme.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum and Exposition, 2024
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624107115
DOIs
StatePublished - 2024
Externally publishedYes
EventAIAA SciTech Forum and Exposition, 2024 - Orlando, United States
Duration: Jan 8 2024Jan 12 2024

Publication series

NameAIAA SciTech Forum and Exposition, 2024

Conference

ConferenceAIAA SciTech Forum and Exposition, 2024
Country/TerritoryUnited States
CityOrlando
Period1/8/241/12/24

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Finite-time Stable Pose Estimation for Unmanned Vehicles in GNSS-denied Environments using an Onboard Camera'. Together they form a unique fingerprint.

Cite this