Abstract
The complete sequencing the human genome and recent analytical advances have provided the opportunity to perform genome-wide studies of human variation. There is substantial potential for such population-genomic approaches to assist efforts to uncover the historical and demographic histories of human populations. Additionally, these genome-wide datasets allow for investigations of variability among genomic regions. Although all genomic regions in a population have experienced the same demographic events, they have not been affected by these events in precisely the same way. Much of the variability among genomic regions is simply the result of genetic drift (i.e., gene frequency changes resulting from the effects of small breeding-population size), but some is also the result of genetic adaptation, which will only affect the gene under selection and nearby regions. We have used a new DNA typing assay that allows for the genotyping of thousands of SNPs on hundreds of samples to identify regions most likely to have been affected by genetic adaptation. Populations that have inhabited different niches (e.g., high-altitude regions) can be used to identify genes underlying the physiological differences. We have used two methods (admixture mapping and genome scans for genetic adaptation) founded on the population-genomic paradigms to search for genes underlying population differences in response to chronic hypoxia. There is great promise that together these methods will facilitate the discovery of genes influencing hypoxic response.
Original language | English (US) |
---|---|
Pages (from-to) | 89-100 |
Number of pages | 12 |
Journal | Advances in Experimental Medicine and Biology |
Volume | 588 |
State | Published - 2006 |
Externally published | Yes |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology