Filtering smooth concordance classes of topologically slice knots

Tim D. Cochran, Shelly Harvey, Peter Horn

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


We propose and analyze a structure with which to organize the difference between a knot in S3 bounding a topologically embedded 2-disk in B4 and it bounding a smoothly embedded disk. The n-solvable filtration of the topological knot concordance group, due to Cochran-Orr-Teichner, may be complete in the sense that any knot in the intersection of its terms may well be topologically slice. However, the natural extension of this filtration to what is called the n-solvable filtration of the smooth knot concordance group, is unsatisfactory because any topologically slice knot lies in every term of the filtration. To ameliorate this we investigate a new filtration, {Bn}, that is simultaneously a refinement of the n-solvable filtration and a generalization of notions of positivity studied by Gompf and Cochran. We show that each Bn/Bn+1 has infinite rank. But our primary interest is in the induced filtration, {Tn}, on the subgroup, T, of knots that are topologically slice. We prove that T /T0 is large, detected by gauge-theoretic invariants and the τ, s, {small element of} -invariants, while the nontriviality of T0/T1 can be detected by certain d -invariants. All of these concordance obstructions vanish for knots in T1. Nonetheless, going beyond this, our main result is that T1/T2 has positive rank. Moreover under a "weak homotopy-ribbon" condition, we show that each Tn=Tn+1 has positive rank. These results suggest that, even among topologically slice knots, the fundamental group is responsible for a wide range of complexity.

Original languageEnglish (US)
Pages (from-to)2103-2162
Number of pages60
JournalGeometry and Topology
Issue number4
StatePublished - Jul 19 2013


  • 4-manifold
  • Concordance
  • Slice knot

ASJC Scopus subject areas

  • Geometry and Topology


Dive into the research topics of 'Filtering smooth concordance classes of topologically slice knots'. Together they form a unique fingerprint.

Cite this