FILAMENTARY HOT-SPOTS IN MICROWAVE IMPATT DIODES: MODIFIED WUNSCH-BELL MODEL.

Perambur S. Neelakantaswamy, Ibrahim R. Turkman, Tapan K. Sarkar

Research output: Contribution to journalConference Articlepeer-review

Abstract

Impatt diodes are useful as high peak-power microwave sources for short duration applications such as in missile-borne systems. However, they exhibit high-catastrophic failures indicated by either peripheral (mess surface) burnouts or by intense filamentary shortouts within the bulk of the semiconductor. Such failures are normally attributed to electrical overstressings (EOS) arising from rf-associated transients or perturbations due to changes in bias voltage, rf-impedance loading and/or due to external stimuli such as electrostatic discharge (ESD), electromagnetic pulsing (EMP), ETC. These electrical overstressings influence the temporal and spatial thermal response of the device leading to catastrophic failures. In order to obtain optimum utility yield of IMPATTs, failure-prediction and trade-off studies required for design-reviews are considered by identifying the mechanisms of failures along with relevant heat-flow calculations (Wunsch-Bell approach) compatible with the diode geometry and electrothermal power relations. For a given extent of failure propensity due to thermal runaway reliability aspects of some typical diode structures are evaluated.

Original languageEnglish (US)
Pages (from-to)92-99
Number of pages8
JournalElectrical Overstress/Electrostatic Discharge Symposium Proceedings
StatePublished - 1985

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'FILAMENTARY HOT-SPOTS IN MICROWAVE IMPATT DIODES: MODIFIED WUNSCH-BELL MODEL.'. Together they form a unique fingerprint.

Cite this