Feedback flow control for a pitching turret (Part II)

R. D. Wallace, P. R. Shea, M. N. Glauser, T. Vaithianathan, H. A. Carlson

Research output: Chapter in Book/Entry/PoemConference contribution

14 Scopus citations

Abstract

Closed-loop systems have been developed for controlling the flow above a three-dimensional turret. The top of the turret is hemispherical, houses a flat optical aperture, and can rotate about two axes (pitch and yaw). The extent of separation and concomitant turbulence levels in the flow above the aperture change as the turret rotates. Suction jet slots circumscribing the aperture serve as control input; an array of pressure sensors on the turret surface provides the controller with information about the state of the flow above the surface. The control objective is to minimize the separation and turbulence in the dynamic environment created by the articulating turret. The closed-loop control systems include dynamical and measurement-based estimators, regulators, filters, and compensators. These components are developed using both computational and experimental data, and the control systems are evaluated through a series of control-in-the-loop CFD simulations and wind tunnel runs. Controller designs and computational tests are described in "Feedback Flow Control for a Pitching Turret (Part I), and the follow-on wind tunnel tests are described here.

Original languageEnglish (US)
Title of host publication48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781600867392
DOIs
StatePublished - 2010

Publication series

Name48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Feedback flow control for a pitching turret (Part II)'. Together they form a unique fingerprint.

Cite this