Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep Learning Method

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck

Research output: Chapter in Book/Entry/PoemConference contribution

4 Scopus citations

Abstract

The Jobs shop Scheduling Problem (JSP) is a canonical combinatorial optimization problem that is routinely solved for a variety of industrial purposes. It models the optimal scheduling of multiple sequences of tasks, each under a fixed order of operations, in which individual tasks require exclusive access to a predetermined resource for a specified processing time. The problem is NP-hard and computationally challenging even for medium-sized instances. Motivated by the increased stochasticity in production chains, this paper explores a deep learning approach to deliver efficient and accurate approximations to the JSP. In particular, this paper proposes the design of a deep neural network architecture to exploit the problem structure, its integration with Lagrangian duality to capture the problem constraints, and a post-processing optimization to guarantee solution feasibility. The resulting method, called JSP-DNN, is evaluated on hard JSP instances from the JSPLIB benchmark library. Computational results show that JSP-DNN can produce JSP approximations of high quality at negligible computational costs.

Original languageEnglish (US)
Title of host publicationAAAI-22 Technical Tracks 7
PublisherAssociation for the Advancement of Artificial Intelligence
Pages7239-7246
Number of pages8
ISBN (Electronic)1577358767, 9781577358763
StatePublished - Jun 30 2022
Event36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
Duration: Feb 22 2022Mar 1 2022

Publication series

NameProceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Volume36

Conference

Conference36th AAAI Conference on Artificial Intelligence, AAAI 2022
CityVirtual, Online
Period2/22/223/1/22

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep Learning Method'. Together they form a unique fingerprint.

Cite this