TY - JOUR
T1 - Extragenic suppression of mota missense mutations of Escherichia coli
AU - Garza, Anthony G.
AU - Bronstein, Philip A.
AU - Valdez, Patricia A.
AU - Harris-Haller, Larry W.
AU - Manson, Michael D.
PY - 1996
Y1 - 1996
N2 - The MotA and MotB proteins are thought to comprise elements of the stator component of the flagellar motor of Escherichia coli. In an effort to understand interactions among proteins within the motor, we attempted to identify extragenic suppressors of 31 dominant, plasmid-borne alleles of motA. Strains containing these mutations were either nonmotile or had severely impaired motility. Four of the mutants yielded extragenic suppressors mapping to the FlaII or FlaIIIB regions of the chromosome. Two types of suppression were observed. Suppression of one type (class I) probably results from increased expression of the chromosomal motB gene due to relief of polarity. Class I suppressors were partial deletions of Mu insertion sequences in the disrupted chromosomal motA gene. Class I suppression was mimicked by expressing the wild-type MotB protein from a second, compatible plasmid. Suppression of the other type (class II) was weaker, and it was not mimicked by overproduction of wild-type MotB protein. Class II suppressors were point mutations in the chromosomal motB or fliG genes. Among 14 independent class II suppressors characterized by DNA sequencing, we identified six different amino acid substitutions in MotB and one substitution in FliG. A number of the strongest class II suppressors had alterations of residues 136 to 138 of MotB. This particular region within the large, C-terminal periplasmic domain of MotB has previously not been associated with a specific function. We suggest that residues 136 to 138 of MotB may interact directly with the periplasmic face of MotA or help position the N-terminal membrane-spanning helix of MotB properly to interact with the membrane-spanning helices of the MotA proton channel.
AB - The MotA and MotB proteins are thought to comprise elements of the stator component of the flagellar motor of Escherichia coli. In an effort to understand interactions among proteins within the motor, we attempted to identify extragenic suppressors of 31 dominant, plasmid-borne alleles of motA. Strains containing these mutations were either nonmotile or had severely impaired motility. Four of the mutants yielded extragenic suppressors mapping to the FlaII or FlaIIIB regions of the chromosome. Two types of suppression were observed. Suppression of one type (class I) probably results from increased expression of the chromosomal motB gene due to relief of polarity. Class I suppressors were partial deletions of Mu insertion sequences in the disrupted chromosomal motA gene. Class I suppression was mimicked by expressing the wild-type MotB protein from a second, compatible plasmid. Suppression of the other type (class II) was weaker, and it was not mimicked by overproduction of wild-type MotB protein. Class II suppressors were point mutations in the chromosomal motB or fliG genes. Among 14 independent class II suppressors characterized by DNA sequencing, we identified six different amino acid substitutions in MotB and one substitution in FliG. A number of the strongest class II suppressors had alterations of residues 136 to 138 of MotB. This particular region within the large, C-terminal periplasmic domain of MotB has previously not been associated with a specific function. We suggest that residues 136 to 138 of MotB may interact directly with the periplasmic face of MotA or help position the N-terminal membrane-spanning helix of MotB properly to interact with the membrane-spanning helices of the MotA proton channel.
UR - http://www.scopus.com/inward/record.url?scp=0029861816&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029861816&partnerID=8YFLogxK
U2 - 10.1128/jb.178.21.6116-6122.1996
DO - 10.1128/jb.178.21.6116-6122.1996
M3 - Article
C2 - 8892808
AN - SCOPUS:0029861816
SN - 0021-9193
VL - 178
SP - 6116
EP - 6122
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 21
ER -