Expression of nitric oxide synthase (NOS) genes in channel catfish is highly regulated and time dependent after bacterial challenges

Jun Yao, Chao Li, Jiaren Zhang, Shikai Liu, Jianbin Feng, Ruijia Wang, Yun Li, Chen Jiang, Lin Song, Ailu Chen, Zhanjiang Liu

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Nitric oxide is well known for its roles in immune responses. As such, its synthesizing enzymes have been extensively studied from various species including some teleost fish species. However, the NOS genes have not been characterized in channel catfish (. Ictalurus punctatus). In this study, we identified and characterized three NOS genes including one NOS1 and two NOS2 genes in channel catfish. Comparing with the NOS genes from other fish species, the catfish NOS genes are highly conserved in their structural features. Phylogenetic and syntenic analyses allowed determination of NOS1 and NOS2 genes of channel catfish and their orthology relationships. Syntenic analysis, as well as the phylogenetic analysis, indicated that the two NOS2 genes of catfish were lineage-specific duplication. The NOS genes were broadly expressed in most tested tissues, with NOS1 being expressed at the highest levels in the brain, NOS2b1 highly expressed in the skin and gill, and NOS2b2 lowly expressed in most of the tested tissues. The most striking findings of this study was that the expression of the NOS genes are highly regulated after bacterial infection, with time-dependent expression patterns that parallel the migration of macrophages. After Edwardsiella ictaluri challenge, dramatically different responses among the three NOS genes were observed. NOS1 was only significantly in the skin early after infection, while NOS2b1 was rapidly upregulated in gill, but more up-regulated in trunk kidney with the progression of the disease, suggesting such differences in gene expression may be reflective of the migration of macrophages among various tissues of the infected fish. In contrast to NOS1 and NOS2b1, NOS2b2 was normally expressed at very low levels, but it is induced in the brain and liver while significantly down-regulated in most other tissues.

Original languageEnglish (US)
Pages (from-to)74-86
Number of pages13
JournalDevelopmental and Comparative Immunology
Volume45
Issue number1
DOIs
StatePublished - Jul 2014
Externally publishedYes

Keywords

  • Disease
  • Fish
  • Genome
  • Immune response
  • NOS
  • Nitric oxide synthase

ASJC Scopus subject areas

  • Immunology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Expression of nitric oxide synthase (NOS) genes in channel catfish is highly regulated and time dependent after bacterial challenges'. Together they form a unique fingerprint.

Cite this