TY - JOUR
T1 - Expression of a hyperthermophilic endoglucanase in hybrid poplar modifies the plant cell wall and enhances digestibility
AU - Xiao, Yao
AU - He, Xuejun
AU - Ojeda-Lassalle, Yemaiza
AU - Poovaiah, Charleson
AU - Coleman, Heather D.
N1 - Funding Information:
We gratefully acknowledge Dr. Stanislav Stoupin and Cornell High‑Energy Synchrotron Source (CHESS) for X‑ray diffraction analysis. CHESS is supported by the NSF Award DMR‑1332208, and the MacCHESS resource is supported by NIGMS Award GM‑103485. Accellerase®1500 and Accellerase® XY were gener‑ ously provided by DuPont.
Funding Information:
This material is based upon work supported by the Department of Energy under Award Number DE‑SC0010411. This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/8/16
Y1 - 2018/8/16
N2 - Background: Expression of glycosyl hydrolases in lignocellulosic biomass has been proposed as an alternative to improve efficiency of cellulosic ethanol production. In planta production of hyperthermophilic hydrolytic enzymes could prevent the detrimental effects often seen resulting from the expression of recombinant mesophilic enzymes to plant hosts. Utilizing lignocellulosic feedstocks to produce hyperthermophilic hydrolases provides additional benefits for ethanol production in the way of transgenic feedstocks serving as both enzyme providers and cellulosic substrates. Results: In this study, transgenic hybrid poplar (Populus alba × grandidentata) was generated to express a hyperthermophilic endoglucanase from Thermotoga neapolitana with an optimal temperature over 100 °C. Functional hyperthermoactive endoglucanase was successfully produced in the transgenic events, and altered phenotypic growth was observed in transgenic lines. Moreover, the line with the highest TnCelB expression in both leaf and developing xylem had reduced lignin content and cellulose crystallinity, resulting in a more digestible cell wall. The activation of TnCelB by a post-harvest heat treatment resulted in enhanced saccharification efficiencies of transgenic poplar lines with moderate TnCelB expression and without alteration of cellulose and lignin when not heat-treated. In planta high-level overexpression of a hyperthermophilic endoglucanase paired with heat treatment following harvest, resulted in biomass that was comparable with wild-type lines that underwent a traditional pretreatment for saccharification. Conclusions: Overexpression of hyperthermophilic endoglucanase in feedstock had impacts on plant growth and cell wall composition, especially when the enzyme was highly expressed. Improved glucan saccharification efficiencies from transgenic lines before and after heat treatment could reduce both the economic and environmental costs associated with ethanol production from lignocellulosic biomass.
AB - Background: Expression of glycosyl hydrolases in lignocellulosic biomass has been proposed as an alternative to improve efficiency of cellulosic ethanol production. In planta production of hyperthermophilic hydrolytic enzymes could prevent the detrimental effects often seen resulting from the expression of recombinant mesophilic enzymes to plant hosts. Utilizing lignocellulosic feedstocks to produce hyperthermophilic hydrolases provides additional benefits for ethanol production in the way of transgenic feedstocks serving as both enzyme providers and cellulosic substrates. Results: In this study, transgenic hybrid poplar (Populus alba × grandidentata) was generated to express a hyperthermophilic endoglucanase from Thermotoga neapolitana with an optimal temperature over 100 °C. Functional hyperthermoactive endoglucanase was successfully produced in the transgenic events, and altered phenotypic growth was observed in transgenic lines. Moreover, the line with the highest TnCelB expression in both leaf and developing xylem had reduced lignin content and cellulose crystallinity, resulting in a more digestible cell wall. The activation of TnCelB by a post-harvest heat treatment resulted in enhanced saccharification efficiencies of transgenic poplar lines with moderate TnCelB expression and without alteration of cellulose and lignin when not heat-treated. In planta high-level overexpression of a hyperthermophilic endoglucanase paired with heat treatment following harvest, resulted in biomass that was comparable with wild-type lines that underwent a traditional pretreatment for saccharification. Conclusions: Overexpression of hyperthermophilic endoglucanase in feedstock had impacts on plant growth and cell wall composition, especially when the enzyme was highly expressed. Improved glucan saccharification efficiencies from transgenic lines before and after heat treatment could reduce both the economic and environmental costs associated with ethanol production from lignocellulosic biomass.
KW - Biofuel production
KW - Cell wall composition
KW - Hyperthermophilic cellulase
KW - Saccharification
KW - Transgenic poplar
UR - http://www.scopus.com/inward/record.url?scp=85052118556&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052118556&partnerID=8YFLogxK
U2 - 10.1186/s13068-018-1224-7
DO - 10.1186/s13068-018-1224-7
M3 - Article
AN - SCOPUS:85052118556
SN - 1754-6834
VL - 11
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
IS - 1
M1 - 225
ER -