TY - JOUR
T1 - Exploring Calcium Manganese Oxide as a Promising Cathode Material for Calcium-Ion Batteries
AU - Chando, Paul Alexis
AU - Chen, Sihe
AU - Shellhamer, Jacob Matthew
AU - Wall, Elizabeth
AU - Wang, Xinlu
AU - Schuarca, Robson
AU - Smeu, Manuel
AU - Hosein, Ian Dean
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/10/24
Y1 - 2023/10/24
N2 - The dependence on lithium for the energy needs of the world, coupled with its scarcity, has prompted the exploration of postlithium alternatives. Calcium-ion batteries are one such possible alternative owing to their high energy density, similar reduction potential, and naturally higher abundance. A critical gap in calcium-ion batteries is the lack of suitable cathodes for intercalating calcium at high voltages and capacities while also maintaining structural stability. Transition metal oxide postspinels have been identified as having crystal structures that can provide low migration barriers, high voltages, and facile transport pathways for calcium ions and thus can serve as cathodes for calcium-ion batteries. However, experimental validation of transition metal oxide postspinel compounds for calcium ion conduction remains unexplored. In this work, calcium manganese oxide (CaMn2O4) in the postspinel phase is explored as an intercalation cathode for calcium-ion batteries. CaMn2O4 is first synthesized via solid-state synthesis, and the phase is verified with X-ray diffraction (XRD). The redox activity of the cathode is investigated with cyclic voltammetry (CV) and galvanostatic (GS) cycling, identifying oxidation potentials at 0.2 and 0.5 V and a broad insertion potential at −1.5 V. CaMn2O4 can cycle at a capacity of 52 mAh/g at a rate of C/33, and calcium cycling is verified with energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) and modeled with density functional theory (DFT) simulations. The results from the investigation concluded that CaMn2O4 is a promising cathode for calcium-ion batteries.
AB - The dependence on lithium for the energy needs of the world, coupled with its scarcity, has prompted the exploration of postlithium alternatives. Calcium-ion batteries are one such possible alternative owing to their high energy density, similar reduction potential, and naturally higher abundance. A critical gap in calcium-ion batteries is the lack of suitable cathodes for intercalating calcium at high voltages and capacities while also maintaining structural stability. Transition metal oxide postspinels have been identified as having crystal structures that can provide low migration barriers, high voltages, and facile transport pathways for calcium ions and thus can serve as cathodes for calcium-ion batteries. However, experimental validation of transition metal oxide postspinel compounds for calcium ion conduction remains unexplored. In this work, calcium manganese oxide (CaMn2O4) in the postspinel phase is explored as an intercalation cathode for calcium-ion batteries. CaMn2O4 is first synthesized via solid-state synthesis, and the phase is verified with X-ray diffraction (XRD). The redox activity of the cathode is investigated with cyclic voltammetry (CV) and galvanostatic (GS) cycling, identifying oxidation potentials at 0.2 and 0.5 V and a broad insertion potential at −1.5 V. CaMn2O4 can cycle at a capacity of 52 mAh/g at a rate of C/33, and calcium cycling is verified with energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) and modeled with density functional theory (DFT) simulations. The results from the investigation concluded that CaMn2O4 is a promising cathode for calcium-ion batteries.
UR - http://www.scopus.com/inward/record.url?scp=85176093657&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85176093657&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.3c00659
DO - 10.1021/acs.chemmater.3c00659
M3 - Article
AN - SCOPUS:85176093657
SN - 0897-4756
VL - 35
SP - 8371
EP - 8381
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 20
ER -