Abstract
This paper describes an experimental study of steel beam-column connections with or without expanded beam flanges with different geometries. The objectives of this study are to elucidate the cyclic behavior of these connections, identify the location of the plastic hinge zone, and provide useful test data for future numerical simulations. Five connection specimens are designed and tested under cyclic load. The test setup consists of a beam and a column connected together by a connection with or without expanded beam flanges. A constant axial force is applied to the column and a time varying point load is applied to the free end of the beam, inducing shear and moment in the connection. Because the only effect to be studied in the present work is the expanded beam flange, the sizes of the beam and column as well as the magnitude of the axial force in the column are kept constant. However, the length, width and shape of the expanded beam flanges are varied. The responses of these connections in terms of their hysteretic behavior, failure modes, stiffness degradation and strain variations are experimentally obtained and discussed. The test results show that while the influence of the expanded beam flanges on hysteretic behavior, stiffness degradation and energy dissipation capacity of the connection is relatively minor, the size of the expanded beam flanges does affect the location of the plastic hinge zone and strain variations in these beam-column joints. Furthermore, in terms of ductility, moment and rotational capacities, all five connections behave well. No weld fracture or premature failure occurs before the formation of a plastic hinge in the beam.
Original language | English (US) |
---|---|
Pages (from-to) | 319-327 |
Number of pages | 9 |
Journal | Steel and Composite Structures |
Volume | 31 |
Issue number | 3 |
DOIs | |
State | Published - May 10 2019 |
Keywords
- Beam-column connections
- Cyclic tests
- Expanded beam flanges
- Hysteretic behavior
- Plastic hinge
ASJC Scopus subject areas
- Civil and Structural Engineering
- Building and Construction
- Metals and Alloys