Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction

Cole T. Edwards, David A. Fike, Matthew R. Saltzman, Wanyi Lu, Zunli Lu

Research output: Research - peer-reviewArticle

Abstract

Profound changes in environmental conditions, particularly atmospheric oxygen levels, are thought to be important drivers of several major biotic events (e.g. mass extinctions and diversifications). The early Paleozoic represents a key interval in the oxygenation of the ocean–atmosphere system and evolution of the biosphere. Global proxies (e.g. carbon (δ13C) and sulfur (δ34S) isotopes) are used to diagnose potential changes in oxygenation and infer causes of environmental change and biotic turnover. The Cambrian–Ordovician contains several trilobite extinctions (some are apparently local, but others are globally correlative) that are attributed to anoxia based on coeval positive δ13C and δ34S excursions. These extinction and excursion events have yet to be coupled with more recently developed proxies thought to be more reflective of local redox conditions in the water column (e.g. I/Ca) to confirm whether these extinctions were associated with oxygen crises over a regional or global scale. Here we examine an Early Ordovician (Tremadocian Stage) extinction event previously interpreted to reflect a continuation of recurrent early Paleozoic anoxic events that expanded into nearshore environments. δ13C, δ34S, and I/Ca trends were measured from three sections in the Great Basin region to test whether I/Ca trends support the notion that anoxia was locally present in the water column along the Laurentian margin. Evidence for anoxia is based on coincident, but not always synchronous, positive δ13C and δ34S excursions (mainly from carbonate-associated sulfate and less so from pyrite data), a 30% extinction of standing generic diversity, and near-zero I/Ca values. Although evidence for local water column anoxia from the I/Ca proxy broadly agrees with intervals of global anoxia inferred from δ13C and δ34S trends, a more complex picture is evident where spatially and temporally variable local trends are superimposed on time-averaged global trends. Stratigraphic sections from the distal and deeper part of the basin (Shingle Pass and Meiklejohn Peak) preserve synchronous global (δ13C and δ34S) and water column (I/Ca) evidence for anoxia, but not at the more proximal section (Ibex, UT). Although geochemical and paleontological evidence point toward anoxia as the driver of this Early Ordovician extinction event, differences between I/Ca and δ13C–δ34S signals suggest regional variation in the timing, extent, and persistence of anoxia.

LanguageEnglish (US)
Pages125-135
Number of pages11
JournalEarth and Planetary Science Letters
Volume481
DOIs
StatePublished - Jan 1 2018

Fingerprint

Tremadocian
redox conditions
mass extinction
anoxia
Ordovician
extinction
Water
Oxidation-Reduction
trend
trends
water column
water
Oxygenation
Oxygen
oxygenation
Paleozoic
oxygen
basin
intervals
Carbonates

Keywords

  • anoxia
  • carbon isotopes
  • extinction
  • I/Ca
  • Ordovician
  • sulfur isotopes

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction. / Edwards, Cole T.; Fike, David A.; Saltzman, Matthew R.; Lu, Wanyi; Lu, Zunli.

In: Earth and Planetary Science Letters, Vol. 481, 01.01.2018, p. 125-135.

Research output: Research - peer-reviewArticle

Edwards, Cole T. ; Fike, David A. ; Saltzman, Matthew R. ; Lu, Wanyi ; Lu, Zunli. / Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction. In: Earth and Planetary Science Letters. 2018 ; Vol. 481. pp. 125-135
@article{d6c39331916949599027bbc27966c88c,
title = "Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction",
abstract = "Profound changes in environmental conditions, particularly atmospheric oxygen levels, are thought to be important drivers of several major biotic events (e.g. mass extinctions and diversifications). The early Paleozoic represents a key interval in the oxygenation of the ocean–atmosphere system and evolution of the biosphere. Global proxies (e.g. carbon (δ13C) and sulfur (δ34S) isotopes) are used to diagnose potential changes in oxygenation and infer causes of environmental change and biotic turnover. The Cambrian–Ordovician contains several trilobite extinctions (some are apparently local, but others are globally correlative) that are attributed to anoxia based on coeval positive δ13C and δ34S excursions. These extinction and excursion events have yet to be coupled with more recently developed proxies thought to be more reflective of local redox conditions in the water column (e.g. I/Ca) to confirm whether these extinctions were associated with oxygen crises over a regional or global scale. Here we examine an Early Ordovician (Tremadocian Stage) extinction event previously interpreted to reflect a continuation of recurrent early Paleozoic anoxic events that expanded into nearshore environments. δ13C, δ34S, and I/Ca trends were measured from three sections in the Great Basin region to test whether I/Ca trends support the notion that anoxia was locally present in the water column along the Laurentian margin. Evidence for anoxia is based on coincident, but not always synchronous, positive δ13C and δ34S excursions (mainly from carbonate-associated sulfate and less so from pyrite data), a 30% extinction of standing generic diversity, and near-zero I/Ca values. Although evidence for local water column anoxia from the I/Ca proxy broadly agrees with intervals of global anoxia inferred from δ13C and δ34S trends, a more complex picture is evident where spatially and temporally variable local trends are superimposed on time-averaged global trends. Stratigraphic sections from the distal and deeper part of the basin (Shingle Pass and Meiklejohn Peak) preserve synchronous global (δ13C and δ34S) and water column (I/Ca) evidence for anoxia, but not at the more proximal section (Ibex, UT). Although geochemical and paleontological evidence point toward anoxia as the driver of this Early Ordovician extinction event, differences between I/Ca and δ13C–δ34S signals suggest regional variation in the timing, extent, and persistence of anoxia.",
keywords = "anoxia, carbon isotopes, extinction, I/Ca, Ordovician, sulfur isotopes",
author = "Edwards, {Cole T.} and Fike, {David A.} and Saltzman, {Matthew R.} and Wanyi Lu and Zunli Lu",
year = "2018",
month = "1",
doi = "10.1016/j.epsl.2017.10.002",
volume = "481",
pages = "125--135",
journal = "Earth and Planetary Sciences Letters",
issn = "0012-821X",
publisher = "Elsevier",

}

TY - JOUR

T1 - Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction

AU - Edwards,Cole T.

AU - Fike,David A.

AU - Saltzman,Matthew R.

AU - Lu,Wanyi

AU - Lu,Zunli

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Profound changes in environmental conditions, particularly atmospheric oxygen levels, are thought to be important drivers of several major biotic events (e.g. mass extinctions and diversifications). The early Paleozoic represents a key interval in the oxygenation of the ocean–atmosphere system and evolution of the biosphere. Global proxies (e.g. carbon (δ13C) and sulfur (δ34S) isotopes) are used to diagnose potential changes in oxygenation and infer causes of environmental change and biotic turnover. The Cambrian–Ordovician contains several trilobite extinctions (some are apparently local, but others are globally correlative) that are attributed to anoxia based on coeval positive δ13C and δ34S excursions. These extinction and excursion events have yet to be coupled with more recently developed proxies thought to be more reflective of local redox conditions in the water column (e.g. I/Ca) to confirm whether these extinctions were associated with oxygen crises over a regional or global scale. Here we examine an Early Ordovician (Tremadocian Stage) extinction event previously interpreted to reflect a continuation of recurrent early Paleozoic anoxic events that expanded into nearshore environments. δ13C, δ34S, and I/Ca trends were measured from three sections in the Great Basin region to test whether I/Ca trends support the notion that anoxia was locally present in the water column along the Laurentian margin. Evidence for anoxia is based on coincident, but not always synchronous, positive δ13C and δ34S excursions (mainly from carbonate-associated sulfate and less so from pyrite data), a 30% extinction of standing generic diversity, and near-zero I/Ca values. Although evidence for local water column anoxia from the I/Ca proxy broadly agrees with intervals of global anoxia inferred from δ13C and δ34S trends, a more complex picture is evident where spatially and temporally variable local trends are superimposed on time-averaged global trends. Stratigraphic sections from the distal and deeper part of the basin (Shingle Pass and Meiklejohn Peak) preserve synchronous global (δ13C and δ34S) and water column (I/Ca) evidence for anoxia, but not at the more proximal section (Ibex, UT). Although geochemical and paleontological evidence point toward anoxia as the driver of this Early Ordovician extinction event, differences between I/Ca and δ13C–δ34S signals suggest regional variation in the timing, extent, and persistence of anoxia.

AB - Profound changes in environmental conditions, particularly atmospheric oxygen levels, are thought to be important drivers of several major biotic events (e.g. mass extinctions and diversifications). The early Paleozoic represents a key interval in the oxygenation of the ocean–atmosphere system and evolution of the biosphere. Global proxies (e.g. carbon (δ13C) and sulfur (δ34S) isotopes) are used to diagnose potential changes in oxygenation and infer causes of environmental change and biotic turnover. The Cambrian–Ordovician contains several trilobite extinctions (some are apparently local, but others are globally correlative) that are attributed to anoxia based on coeval positive δ13C and δ34S excursions. These extinction and excursion events have yet to be coupled with more recently developed proxies thought to be more reflective of local redox conditions in the water column (e.g. I/Ca) to confirm whether these extinctions were associated with oxygen crises over a regional or global scale. Here we examine an Early Ordovician (Tremadocian Stage) extinction event previously interpreted to reflect a continuation of recurrent early Paleozoic anoxic events that expanded into nearshore environments. δ13C, δ34S, and I/Ca trends were measured from three sections in the Great Basin region to test whether I/Ca trends support the notion that anoxia was locally present in the water column along the Laurentian margin. Evidence for anoxia is based on coincident, but not always synchronous, positive δ13C and δ34S excursions (mainly from carbonate-associated sulfate and less so from pyrite data), a 30% extinction of standing generic diversity, and near-zero I/Ca values. Although evidence for local water column anoxia from the I/Ca proxy broadly agrees with intervals of global anoxia inferred from δ13C and δ34S trends, a more complex picture is evident where spatially and temporally variable local trends are superimposed on time-averaged global trends. Stratigraphic sections from the distal and deeper part of the basin (Shingle Pass and Meiklejohn Peak) preserve synchronous global (δ13C and δ34S) and water column (I/Ca) evidence for anoxia, but not at the more proximal section (Ibex, UT). Although geochemical and paleontological evidence point toward anoxia as the driver of this Early Ordovician extinction event, differences between I/Ca and δ13C–δ34S signals suggest regional variation in the timing, extent, and persistence of anoxia.

KW - anoxia

KW - carbon isotopes

KW - extinction

KW - I/Ca

KW - Ordovician

KW - sulfur isotopes

UR - http://www.scopus.com/inward/record.url?scp=85033578589&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85033578589&partnerID=8YFLogxK

U2 - 10.1016/j.epsl.2017.10.002

DO - 10.1016/j.epsl.2017.10.002

M3 - Article

VL - 481

SP - 125

EP - 135

JO - Earth and Planetary Sciences Letters

T2 - Earth and Planetary Sciences Letters

JF - Earth and Planetary Sciences Letters

SN - 0012-821X

ER -