ER transport on actin filaments in squid giant axon: Implications for signal transduction at synapse

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


The smooth endoplasmic reticulum (S-ER) is transported on actin filaments in the giant axon of the squid. The identity of the myosin motors that transport S-ER in the squid giant axon has been determined. Our recent studies have shown that the motor for movement of S-ER vesicles on actin filaments is Myosin-V (1). These findings grew out of a series of studies that began with the initial observation that vesicles in the giant axon of the squid move on both microtubules and actin filaments (2). These initial studies documented the ability of individual vesicles to move from microtubules to actin filaments and led to the development of the dual filament model of vesicle transport (3, 4). The model proposes that long- range movement of vesicles occurs on microtubules and short-range movement on actin filaments. S-ER vesicles were identified as the major population of vesicles in the axon that use myosin-V for movement on actin filaments. The S-ER is the primary site of calcium storage, and it regulates the local cytosolic calcium concentration. Calcium release from the S-ER in neurons couples electrical excitation to signal transduction cascades. The signaling cascades triggered by the release of calcium from S-ER in dendritic spines are postulated to initiate the cellular mechanisms that lead to learning and memory.

Original languageEnglish (US)
Pages (from-to)S248-S250
JournalFASEB Journal
Issue number15 SUPPL. 2
StatePublished - 1999
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Genetics


Dive into the research topics of 'ER transport on actin filaments in squid giant axon: Implications for signal transduction at synapse'. Together they form a unique fingerprint.

Cite this