TY - GEN
T1 - Equilibrium pressure of liquid confined in nanopores using molecular dynamics simulations
AU - Zou, An
AU - Maroo, Shalabh C.
AU - Gupta, Manish
N1 - Publisher Copyright:
© 2020 ASME
PY - 2020
Y1 - 2020
N2 - Liquid in a confined environment or immediate vicinity of a surface is a ubiquitous phenomenon in natural and technological systems. In such circumstances, the intermolecular forces between the liquid and surface cannot be neglected, and therefore the thermodynamic properties of liquid can be significantly different from the bulk. Here we present an investigation of equilibrium pressure in hydrophilic nanopore connected to bulk using molecular dynamics simulations. With similar bulk pressure, negative pressure was observed in 2 nm pore while positive pressure equilibrated in 4 nm pore. Due to wall attraction, liquid atoms were layered near the wall inside the pore, which dominated the pore pressure, no matter if it was negative or positive.
AB - Liquid in a confined environment or immediate vicinity of a surface is a ubiquitous phenomenon in natural and technological systems. In such circumstances, the intermolecular forces between the liquid and surface cannot be neglected, and therefore the thermodynamic properties of liquid can be significantly different from the bulk. Here we present an investigation of equilibrium pressure in hydrophilic nanopore connected to bulk using molecular dynamics simulations. With similar bulk pressure, negative pressure was observed in 2 nm pore while positive pressure equilibrated in 4 nm pore. Due to wall attraction, liquid atoms were layered near the wall inside the pore, which dominated the pore pressure, no matter if it was negative or positive.
UR - http://www.scopus.com/inward/record.url?scp=85092655908&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092655908&partnerID=8YFLogxK
U2 - 10.1115/HT2020-9089
DO - 10.1115/HT2020-9089
M3 - Conference contribution
AN - SCOPUS:85092655908
T3 - ASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
BT - ASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 Heat Transfer Summer Conference, HT 2020, collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
Y2 - 13 July 2020 through 15 July 2020
ER -