Energy efficiency of fixed-rate wireless transmissions under QoS constraints

Research output: Chapter in Book/Entry/PoemConference contribution

4 Scopus citations

Abstract

Transmission over wireless fading channels under quality of service (QoS) constraints is studied when only the receiver has perfect channel side information. Being unaware of the channel conditions, transmitter is assumed to send the information at a fixed rate. Under these assumptions, a two-state (ON-OFF) transmission model is adopted, where information is transmitted reliably at a fixed rate in the ON state while no reliable transmission occurs in the OFF state. QoS limitations are imposed as constraints on buffer violation probabilities, and effective capacity formulation is used to identify the maximum arrival rate that a wireless channel can sustain while satisfying statistical QoS constraints. Energy efficiency is investigated by obtaining the minimum bit energy and wideband slope expressions in both low-power and wideband regimes. The increased energy requirements due to the presence of QoS constraints are quantified. Comparisons with variable-rate/fixed-power and variable-rate/variable-power cases are given. Overall, an energy-delay tradeoff for fixed-rate transmission systems is provided.

Original languageEnglish (US)
Title of host publicationProceedings - 2009 IEEE International Conference on Communications, ICC 2009
DOIs
StatePublished - 2009
Externally publishedYes
Event2009 IEEE International Conference on Communications, ICC 2009 - Dresden, Germany
Duration: Jun 14 2009Jun 18 2009

Publication series

NameIEEE International Conference on Communications
ISSN (Print)0536-1486

Other

Other2009 IEEE International Conference on Communications, ICC 2009
Country/TerritoryGermany
CityDresden
Period6/14/096/18/09

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Energy efficiency of fixed-rate wireless transmissions under QoS constraints'. Together they form a unique fingerprint.

Cite this