TY - GEN
T1 - Energy consumption and latency analysis for wireless multimedia sensor networks
AU - Pinto, Alvaro
AU - Zhang, Zhe
AU - Dong, Xin
AU - Velipasalar, Senem
AU - Vuran, M. Can
AU - Gursoy, M. Cenk
PY - 2010
Y1 - 2010
N2 - Energy and bandwidth are limited resources in wireless sensor networks, and communication consumes significant amount of energy. When wireless vision sensors are used to capture and transfer image and video data, the problems of limited energy and bandwidth become even more pronounced. Thus, message traffic should be decreased to reduce the communication cost. In many applications, the interest is to detect composite and semantically higher-level events based on information from multiple sensors. Rather than sending all the information to the sinks and performing composite event detection at the sinks or control-center, it is much more efficient to push the detection of semantically high-level events within the network, and perform composite event detection in a peer-to-peer and energy-efficient manner across embedded smart cameras. In this paper, three different operation scenarios are analyzed for a wireless vision sensor network. A detailed quantitative comparison of these operation scenarios are presented in terms of energy consumption and latency. This quantitative analysis provides the motivation for, and emphasizes (1) the importance of performing high-level local processing and decision making at the embedded sensor level and (2) need for peer-to-peer communication solutions for wireless multimedia sensor networks.
AB - Energy and bandwidth are limited resources in wireless sensor networks, and communication consumes significant amount of energy. When wireless vision sensors are used to capture and transfer image and video data, the problems of limited energy and bandwidth become even more pronounced. Thus, message traffic should be decreased to reduce the communication cost. In many applications, the interest is to detect composite and semantically higher-level events based on information from multiple sensors. Rather than sending all the information to the sinks and performing composite event detection at the sinks or control-center, it is much more efficient to push the detection of semantically high-level events within the network, and perform composite event detection in a peer-to-peer and energy-efficient manner across embedded smart cameras. In this paper, three different operation scenarios are analyzed for a wireless vision sensor network. A detailed quantitative comparison of these operation scenarios are presented in terms of energy consumption and latency. This quantitative analysis provides the motivation for, and emphasizes (1) the importance of performing high-level local processing and decision making at the embedded sensor level and (2) need for peer-to-peer communication solutions for wireless multimedia sensor networks.
UR - http://www.scopus.com/inward/record.url?scp=79551637831&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79551637831&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2010.5683898
DO - 10.1109/GLOCOM.2010.5683898
M3 - Conference contribution
AN - SCOPUS:79551637831
SN - 9781424456383
T3 - GLOBECOM - IEEE Global Telecommunications Conference
BT - 2010 IEEE Global Telecommunications Conference, GLOBECOM 2010
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 53rd IEEE Global Communications Conference, GLOBECOM 2010
Y2 - 6 December 2010 through 10 December 2010
ER -