End-to-End Constrained Optimization Learning: A Survey

James Kotary, Ferdinando Fioretto, Pascal van Hentenryck, Bryan Wilder

Research output: Chapter in Book/Entry/PoemConference contribution

41 Scopus citations

Abstract

This paper surveys the recent attempts at leveraging machine learning to solve constrained optimization problems. It focuses on surveying the work on integrating combinatorial solvers and optimization methods with machine learning architectures. These approaches hold the promise to develop new hybrid machine learning and optimization methods to predict fast, approximate, solutions to combinatorial problems and to enable structural logical inference. This paper presents a conceptual review of the recent advancements in this emerging area.

Original languageEnglish (US)
Title of host publicationProceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
EditorsZhi-Hua Zhou
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4475-4482
Number of pages8
ISBN (Electronic)9780999241196
StatePublished - 2021
Event30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada
Duration: Aug 19 2021Aug 27 2021

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference30th International Joint Conference on Artificial Intelligence, IJCAI 2021
Country/TerritoryCanada
CityVirtual, Online
Period8/19/218/27/21

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'End-to-End Constrained Optimization Learning: A Survey'. Together they form a unique fingerprint.

Cite this