Electromagnetic shower reconstruction and energy validation with Michel electrons and p0samples for the deep-learning-based analyses in MicroBooNE

P. Abratenko, R. An, J. Anthony, L. Arellano, J. Asaadi, A. Ashkenazi, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, V. Basque, L. Bathe-Peters, O. Benevides Rodrigues, S. Berkman, A. Bhanderi, A. Bhat, M. Bishai, A. Blake, T. Bolton, J. Y. BookL. Camilleri, D. Caratelli, I. Caro Terrazas, R. Castillo Fernandez, F. Cavanna, G. Cerati, Y. Chen, D. Cianci, J. M. Conrad, M. Convery, L. Cooper-Troendle, J. I. Crespo-Anadón, M. Del Tutto, S. R. Dennis, P. Detje, A. Devitt, R. Diurba, R. Dorrill, K. Duffy, S. Dytman, B. Eberly, A. Ereditato, J. J. Evans, R. Fine, G. A. Fiorentini Aguirre, R. S. Fitzpatrick, B. T. Fleming, N. Foppiani, D. Franco, A. P. Furmanski, D. Garcia-Gamez, S. Gardiner, G. Ge, S. Gollapinni, O. Goodwin, E. Gramellini, P. Green, H. Greenlee, W. Gu, R. Guenette, P. Guzowski, L. Hagaman, O. Hen, C. Hilgenberg, G. A. Horton-Smith, A. Hourlier, R. Itay, C. James, X. Ji, L. Jiang, J. H. Jo, R. A. Johnson, Y. J. Jwa, D. Kalra, N. Kamp, N. Kaneshige, G. Karagiorgi, W. Ketchum, M. Kirby, T. Kobilarcik, I. Kreslo, R. Lazur, I. Lepetic, K. Li, Y. Li, K. Lin, B. R. Littlejohn, W. C. Louis, X. Luo, K. Manivannan, C. Mariani, D. Marsden, J. Marshall, D. A. Martinez Caicedo, K. Mason, A. Mastbaum, N. McConkey, V. Meddage, T. Mettler, K. Miller, J. Mills, K. Mistry, A. Mogan, T. Mohayai, J. Moon, M. Mooney, A. F. Moor, C. D. Moore, L. Mora Lepin, J. Mousseau, M. Murphy, D. Naples, A. Navrer-Agasson, M. Nebot-Guinot, R. K. Neely, D. A. Newmark, J. Nowak, M. Nunes, O. Palamara, V. Paolone, A. Papadopoulou, V. Papavassiliou, S. F. Pate, N. Patel, A. Paudel, Z. Pavlovic, E. Piasetzky, I. D. Ponce-Pinto, S. Prince, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, M. Reggiani-Guzzo, L. Ren, L. C.J. Rice, L. Rochester, J. Rodriguez Rondon, M. Rosenberg, M. Ross-Lonergan, G. Scanavini, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, R. Sharankova, J. Shi, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Söldner-Rembold, P. Spentzouris, J. Spitz, M. Stancari, J. St., T. Strauss, K. Sutton, S. Sword-Fehlberg, A. M. Szelc, N. Tagg, W. Tang, K. Terao, C. Thorpe, D. Totani, M. Toups, Y. T. Tsai, M. A. Uchida, T. Usher, W. Van De Pontseele, B. Viren, M. Weber, H. Wei, Z. Williams, S. Wolbers, T. Wongjirad, M. Wospakrik, K. Wresilo, N. Wright, W. Wu, E. Yandel, T. Yang, G. Yarbrough, L. E. Yates, H. W. Yu, G. P. Zeller, J. Zennamo, C. Zhang

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two ?µ-sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff.

Original languageEnglish (US)
Article numberT12017
JournalJournal of Instrumentation
Volume16
Issue number12
DOIs
StatePublished - Dec 2021

Keywords

  • Neutrino detectors
  • Noble liquid detectors (scintillation, ionization, double-phase)
  • Pattern recognition, cluster finding, calibration and fitting methods
  • Time projection Chambers (TPC)

ASJC Scopus subject areas

  • Instrumentation
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Electromagnetic shower reconstruction and energy validation with Michel electrons and p0samples for the deep-learning-based analyses in MicroBooNE'. Together they form a unique fingerprint.

Cite this