TY - JOUR
T1 - El Nio in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica
AU - Ivany, Linda C.
AU - Brey, Thomas
AU - Huber, Matthew
AU - Buick, Devin P.
AU - Schöne, Bernd R.
PY - 2011/8/1
Y1 - 2011/8/1
N2 - Quasi-periodic variation in sea-surface temperature, precipitation, and sea-level pressure in the equatorial Pacific known as the El Nio-Southern Oscillation (ENSO) is an important mode of interannual variability in global climate. A collapse of the tropical Pacific onto a state resembling a so-called permanent El Nio, with a preferentially warmed eastern equatorial Pacific, flatter thermocline, and reduced interannual variability, in a warmer world is predicted by prevailing ENSO theory. If correct, future warming will be accompanied by a shift toward persistent conditions resembling El Nio years today, with major implications for global hydrological cycles and consequent impacts on socioeconomic and ecological systems. However, much uncertainty remains about how interannual variability will be affected. Here, we present multi-annual records of climate derived from growth increment widths in fossil bivalves and co-occurring driftwood from the Antarctic peninsula that demonstrate significant variability in the quasi-biennial and 3-6 year bands consistent with ENSO, despite early Eocene (∼50 Mya) greenhouse conditions with global average temperature ∼10 degrees higher than today. A coupled climate model suggests an ENSO signal and teleconnections to this region during the Eocene, much like today. The presence of ENSO variation during this markedly warmer interval argues for the persistence of robust interannual variability in our future greenhouse world.
AB - Quasi-periodic variation in sea-surface temperature, precipitation, and sea-level pressure in the equatorial Pacific known as the El Nio-Southern Oscillation (ENSO) is an important mode of interannual variability in global climate. A collapse of the tropical Pacific onto a state resembling a so-called permanent El Nio, with a preferentially warmed eastern equatorial Pacific, flatter thermocline, and reduced interannual variability, in a warmer world is predicted by prevailing ENSO theory. If correct, future warming will be accompanied by a shift toward persistent conditions resembling El Nio years today, with major implications for global hydrological cycles and consequent impacts on socioeconomic and ecological systems. However, much uncertainty remains about how interannual variability will be affected. Here, we present multi-annual records of climate derived from growth increment widths in fossil bivalves and co-occurring driftwood from the Antarctic peninsula that demonstrate significant variability in the quasi-biennial and 3-6 year bands consistent with ENSO, despite early Eocene (∼50 Mya) greenhouse conditions with global average temperature ∼10 degrees higher than today. A coupled climate model suggests an ENSO signal and teleconnections to this region during the Eocene, much like today. The presence of ENSO variation during this markedly warmer interval argues for the persistence of robust interannual variability in our future greenhouse world.
UR - http://www.scopus.com/inward/record.url?scp=80052235370&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052235370&partnerID=8YFLogxK
U2 - 10.1029/2011GL048635
DO - 10.1029/2011GL048635
M3 - Article
AN - SCOPUS:80052235370
SN - 0094-8276
VL - 38
JO - Geophysical Research Letters
JF - Geophysical Research Letters
IS - 16
M1 - L16709
ER -