Abstract
Protein function affects subsequent biological processes such as cell adhesion and thrombus formation. We have developed tools to detect the biological activity of fibrinogen using AFM techniques. In this work, we measure the effects of solution concentration, residence time, and protein competition with BSA on the time-dependent functional changes in adsorbed fibrinogen on mica surface. AFM probes were functionalized with monoclonal antibodies recognizing fibrinogen gamma 392-411, which includes the platelet binding dodecapeptide region. Results show good correlation between changes in biological activity of adsorbed fibrinogen at the molecular scale measured by AFM and platelet adhesion measured at a macroscale. Furthermore, the results show that inclusion of BSA into the solution moves the peak biological activity of fibrinogen to earlier time points. These results illustrate a complex and dynamic biological interface and offer new opportunities for improved insights into the molecular basis for the biological response to biomaterials.
Original language | English (US) |
---|---|
Pages (from-to) | 10814-10819 |
Number of pages | 6 |
Journal | Langmuir |
Volume | 27 |
Issue number | 17 |
DOIs | |
State | Published - Sep 6 2011 |
Externally published | Yes |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry